Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients

  1. Lakshmi E Miller-Vedam
  2. Bastian Bräuning
  3. Katerina D Popova
  4. Nicole T Schirle Oakdale
  5. Jessica L Bonnar
  6. Jesuraj R Prabu
  7. Elizabeth A Boydston
  8. Natalia Sevillano
  9. Matthew J Shurtleff
  10. Robert M Stroud
  11. Charles S Craik
  12. Brenda A Schulman  Is a corresponding author
  13. Adam Frost  Is a corresponding author
  14. Jonathan S Weissman  Is a corresponding author
  1. Whitehead Institute for Biomedical Research, United States
  2. Max Plank Institute for Biochemistry, Germany
  3. University of California, San Francisco, United States
  4. Max Planck Institute of Biochemistry, Germany
  5. FairJourney Biologics, Portugal
  6. Stanford University, United States
  7. St Jude Children's Research Hospital, United States

Abstract

Membrane protein biogenesis in the endoplasmic reticulum (ER) is complex and failure-prone. The ER membrane protein complex (EMC), comprising eight conserved subunits, has emerged as a central player in this process. Yet, we have limited understanding of how EMC enables insertion and integrity of diverse clients, from tail-anchored to polytopic transmembrane proteins. Here, yeast and human EMC cryo-EM structures reveal conserved intricate assemblies and human-specific features associated with pathologies. Structure-based functional studies distinguish between two separable EMC activities, as an insertase regulating tail-anchored protein levels and a broader role in polytopic membrane protein biogenesis. These depend on mechanistically coupled yet spatially distinct regions including two lipid-accessible membrane cavities which confer client-specific regulation, and a non-insertase EMC function mediated by the EMC lumenal domain. Our studies illuminate the structural and mechanistic basis of EMC's multifunctionality and point to its role in differentially regulating the biogenesis of distinct client protein classes.

Data availability

All data generated or analyzed during this study are included in the manuscript or will have been made available in public repositories. Flow cytometry data and analysis code is available at Github (https://github.com/katerinadpopova/emcstructurefunction). Electron microscopy maps are available at the EMDB (unsharpened, sharpened, half maps, FSC file) (accession codes EMDB - 11732, 11733, 23003, 23033), models at the PDB (accession codes PDB - 7ADO, 7ADP, 7KRA, 7KTX), and raw cryo-EM data at EMPIAR. Key Resource Table is included as an appendix to the main article and is referenced throughout the Methods section with relevant reagents used or generated during the course of the study allowing for replication of these or request of specific cell lines and reagents. Supplementary file 1 contains raw mass spectrometry data. Supplementary file 4 contains un-cropped western blots. Supplementary file 5 contains plasmid sequences for mutant constructs generated for this study.

The following data sets were generated

Article and author information

Author details

  1. Lakshmi E Miller-Vedam

    Biology, Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2980-7479
  2. Bastian Bräuning

    Molecular Signaling, Max Plank Institute for Biochemistry, Martinsreid, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7194-2500
  3. Katerina D Popova

    Biology, Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole T Schirle Oakdale

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jessica L Bonnar

    Biology, Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesuraj R Prabu

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Boydston

    Biology, Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8365-0436
  8. Natalia Sevillano

    Antibody Engineering, FairJourney Biologics, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew J Shurtleff

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9846-3051
  10. Robert M Stroud

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Charles S Craik

    Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7704-9185
  12. Brenda A Schulman

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    For correspondence
    schulman@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Adam Frost

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    adam.frost@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2231-2577
  14. Jonathan S Weissman

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jonathan.Weissman@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2445-670X

Funding

Deutsche Forschungsgemeinschaft

  • Brenda A Schulman

Chan Zuckerberg Initiative

  • Adam Frost

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg

  • Brenda A Schulman

National Institutes of Health (P50AI150476,1P41CA196276-01)

  • Natalia Sevillano
  • Charles S Craik

Helen Hay Whitney Foundation

  • Matthew J Shurtleff

Peter und Traudl Engelhorn Stiftung

  • Bastian Bräuning

Jane Coffin Childs Memorial Fund for Medical Research

  • Nicole T Schirle Oakdale

National Institutes of Health (1DP2OD017690-01)

  • Adam Frost

National Institutes of Health (GM24485)

  • Robert M Stroud

Howard Hughes Medical Institute

  • Jonathan S Weissman

The funders had no role in study design, data collection, data interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Received: August 30, 2020
  2. Accepted: November 17, 2020
  3. Accepted Manuscript published: November 25, 2020 (version 1)
  4. Version of Record published: January 5, 2021 (version 2)
  5. Version of Record updated: January 6, 2021 (version 3)

Copyright

© 2020, Miller-Vedam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,268
    views
  • 762
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lakshmi E Miller-Vedam
  2. Bastian Bräuning
  3. Katerina D Popova
  4. Nicole T Schirle Oakdale
  5. Jessica L Bonnar
  6. Jesuraj R Prabu
  7. Elizabeth A Boydston
  8. Natalia Sevillano
  9. Matthew J Shurtleff
  10. Robert M Stroud
  11. Charles S Craik
  12. Brenda A Schulman
  13. Adam Frost
  14. Jonathan S Weissman
(2020)
Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients
eLife 9:e62611.
https://doi.org/10.7554/eLife.62611

Share this article

https://doi.org/10.7554/eLife.62611

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.