Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation

Abstract

Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the translocation and arrest-cancelation of VemP. We also identified the conserved Arg-85 residue of VemP as a crucial element that confers PpiD-dependence to VemP and plays an essential role in the regulated arrest-cancelation. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3 and 4, Figure 2-figure supplements 1, 3 and 4 and Figure 5-figure supplements 1 and 2.

Article and author information

Author details

  1. Ryoji Miyazaki

    Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Yoshinori Akiyama

    Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4483-5408
  3. Hiroyuki Mori

    Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
    For correspondence
    hiromori@infront.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0429-1269

Funding

Japan Society for the Promotion of Science (18H06047)

  • Ryoji Miyazaki

Japan Society for the Promotion of Science (19K21179)

  • Ryoji Miyazaki

Japan Society for the Promotion of Science (20K15715)

  • Ryoji Miyazaki

Japan Society for the Promotion of Science (15H01532)

  • Yoshinori Akiyama

Japan Society for the Promotion of Science (18H02404)

  • Yoshinori Akiyama

Japan Society for the Promotion of Science (17H05666)

  • Hiroyuki Mori

Japan Society for the Promotion of Science (17H05879)

  • Hiroyuki Mori

Japan Society for the Promotion of Science (17K07334)

  • Hiroyuki Mori

Japan Society for the Promotion of Science (20K06556)

  • Hiroyuki Mori

The funders had no role in study design, data collection and interpretation.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Version history

  1. Received: August 31, 2020
  2. Accepted: December 11, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Version of Record published: January 8, 2021 (version 2)
  5. Version of Record updated: January 13, 2021 (version 3)

Copyright

© 2020, Miyazaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 742
    views
  • 126
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryoji Miyazaki
  2. Yoshinori Akiyama
  3. Hiroyuki Mori
(2020)
Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation
eLife 9:e62623.
https://doi.org/10.7554/eLife.62623

Share this article

https://doi.org/10.7554/eLife.62623

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.