Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction

  1. Laura Le Pelletier
  2. Matthieu Mantecon
  3. Jennifer Gorwood
  4. Martine Auclair
  5. Roberta Foresti
  6. Roberto Motterlini
  7. Mireille Laforge
  8. Michael Atlan
  9. Bruno Fève
  10. Jacqueline Capeau
  11. Claire Lagathu  Is a corresponding author
  12. Veronique Bereziat  Is a corresponding author
  1. Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), France
  2. University Paris-Est Créteil, INSERM, IMRB, France
  3. CNRS, INSERM UMRS_1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, France
  4. Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP Tenon Hospital Department of Plastic Surgery, F-75020 Paris, France
  5. Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint Antoine Hospital, Department of Endocrinology, PRISIS, F-75012 Paris, France

Abstract

Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived-stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25y) or older women (>60y). Increased cell passages of young-donor ASCs (in vitro aging), resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated-protein-kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Laura Le Pelletier

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthieu Mantecon

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Gorwood

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Martine Auclair

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Roberta Foresti

    University Paris-Est Créteil, INSERM, IMRB, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Roberto Motterlini

    University Paris-Est Créteil, INSERM, IMRB, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Mireille Laforge

    CNRS, INSERM UMRS_1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Atlan

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP Tenon Hospital Department of Plastic Surgery, F-75020 Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Bruno Fève

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), AP-HP, Saint Antoine Hospital, Department of Endocrinology, PRISIS, F-75012 Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Jacqueline Capeau

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Claire Lagathu

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    For correspondence
    claire.lagathu@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
  12. Veronique Bereziat

    Metabolism and Inflammation, Sorbonne Université, INSERM UMR_S 938, RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
    For correspondence
    veronique.bereziat@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9795-549X

Funding

Fondation pour la Recherche Médicale (EQU201903007868)

  • Bruno Fève

Agence Nationale de la Recherche (RHU-ANR-15-RHUS-0003)

  • Jacqueline Capeau

Institut National de la Santé et de la Recherche Médicale

  • Laura Le Pelletier
  • Matthieu Mantecon
  • Jennifer Gorwood
  • Martine Auclair
  • Roberta Foresti
  • Roberto Motterlini
  • Michael Atlan
  • Bruno Fève
  • Jacqueline Capeau
  • Claire Lagathu
  • Veronique Bereziat

Sorbonne Universite

  • Laura Le Pelletier
  • Matthieu Mantecon
  • Jennifer Gorwood
  • Martine Auclair
  • Michael Atlan
  • Bruno Fève
  • Jacqueline Capeau
  • Claire Lagathu
  • Veronique Bereziat

Universite Paris Est Creteil

  • Roberta Foresti
  • Roberto Motterlini

Universite de Paris

  • Mireille Laforge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Le Pelletier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,396
    views
  • 597
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Le Pelletier
  2. Matthieu Mantecon
  3. Jennifer Gorwood
  4. Martine Auclair
  5. Roberta Foresti
  6. Roberto Motterlini
  7. Mireille Laforge
  8. Michael Atlan
  9. Bruno Fève
  10. Jacqueline Capeau
  11. Claire Lagathu
  12. Veronique Bereziat
(2021)
Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction
eLife 10:e62635.
https://doi.org/10.7554/eLife.62635

Share this article

https://doi.org/10.7554/eLife.62635

Further reading

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.