Hyaluronic acid fuels pancreatic cancer cell growth

  1. Peter K Kim
  2. Christopher J Halbrook
  3. Samuel A Kerk
  4. Megan Radyk
  5. Stephanie Wisner
  6. Daniel M Kremer
  7. Peter Sajjakulnukit
  8. Anthony Andren
  9. Sean W Hou
  10. Ayush Trivedi
  11. Galloway Thurston
  12. Abhinav Anand
  13. Liang Yan
  14. Lucia Salamanca-Cardona
  15. Samuel D Welling
  16. Li Zhang
  17. Matthew R Pratt
  18. Kayvan R Keshari
  19. Haoqiang Ying
  20. Costas Lyssiotis  Is a corresponding author
  1. University of Michigan, United States
  2. The University of Texas MD Anderson Cancer Center, United States
  3. Memorial Sloan Kettering Cancer Center, United States
  4. University of Southern California, United States

Abstract

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; raw images have been provided for all western blots in the Source Data file.

Article and author information

Author details

  1. Peter K Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9382-7223
  2. Christopher J Halbrook

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Samuel A Kerk

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Megan Radyk

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Stephanie Wisner

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  6. Daniel M Kremer

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Peter Sajjakulnukit

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  8. Anthony Andren

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  9. Sean W Hou

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  10. Ayush Trivedi

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  11. Galloway Thurston

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  12. Abhinav Anand

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  13. Liang Yan

    Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  14. Lucia Salamanca-Cardona

    Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, United States
    Competing interests
    No competing interests declared.
  15. Samuel D Welling

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  16. Li Zhang

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  17. Matthew R Pratt

    Department of Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3205-5615
  18. Kayvan R Keshari

    Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  19. Haoqiang Ying

    Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  20. Costas Lyssiotis

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    clyssiot@med.umich.edu
    Competing interests
    Costas Lyssiotis, has received consulting fees from Astellas Pharmaceuticals and Odyssey Therapeutics and is an inventor on patents pertaining to Kras regulated metabolic pathways, redox control pathways in pancreatic cancer, and targeting the GOT1-pathway as a therapeutic approach (US Patent No: 2015126580-A1, 05/07/2015; US Patent No: 20190136238, 05/09/2019; International Patent No: WO2013177426-A2, 04/23/2015)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9309-6141

Funding

National Cancer Institute (Cancer Biology Training Grant,T32AI007413)

  • Peter K Kim
  • Samuel A Kerk

Thompson Family Foundation (Research Grant)

  • Kayvan R Keshari

STARR Cancer Consortium (Research Grant)

  • Kayvan R Keshari

National Cancer Institute (Cancer Center Support Grant,P30CA008748)

  • Kayvan R Keshari

American Association for Cancer Research (Pathway to Leadership award,13-70-25-LYSS)

  • Costas Lyssiotis

V Foundation for Cancer Research (Junior Scholar Award,V2016-009)

  • Costas Lyssiotis

Sidney Kimmel Foundation (Kimmel Scholar Award,SKF-16-005)

  • Costas Lyssiotis

American Association for Cancer Research (NextGen Grant for Transformative Cancer Research,17-20-01-LYSS)

  • Costas Lyssiotis

National Cancer Institute (Cancer Center Support Grant,P30 CA046592)

  • Costas Lyssiotis

National Cancer Institute (R37CA237421)

  • Costas Lyssiotis

National Cancer Institute (R01CA248160)

  • Costas Lyssiotis

National Cancer Institute (Predoctoral Fellowship,F31CA243344)

  • Peter K Kim

National Cancer Institute (R01CA244931)

  • Costas Lyssiotis

National Institutes of Health (U24DK097153)

  • Costas Lyssiotis

Charles Woodson Research Fund (Research Support)

  • Costas Lyssiotis

UM Pediatric Brain Tumor Initiative (Research Support)

  • Costas Lyssiotis

National Cancer Institute (F99/K00CA264414)

  • Samuel A Kerk

National Institute of Child Health and Human Development (T32HD007505)

  • Megan Radyk

National Cancer Institute (Pathway to Independence Award,K99CA241357)

  • Christopher J Halbrook

National Institute of Diabetes and Digestive and Kidney Diseases (Postdoctoral Support,P30DK034933)

  • Christopher J Halbrook

National Cancer Institute (F31CA24745701)

  • Samuel A Kerk

National Cancer Institute (R01CA237466)

  • Kayvan R Keshari

National Cancer Institute (R01CA252037)

  • Kayvan R Keshari

National Cancer Institute (R21CA212958)

  • Kayvan R Keshari

Stand Up To Cancer (Research Grant)

  • Kayvan R Keshari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted in accordance with the Office of Laboratory Animal Welfare and approved by the Institutional Animal Care and Use Committees of the University of Michigan. Protocol#: PRO00008877

Copyright

© 2021, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,777
    views
  • 961
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter K Kim
  2. Christopher J Halbrook
  3. Samuel A Kerk
  4. Megan Radyk
  5. Stephanie Wisner
  6. Daniel M Kremer
  7. Peter Sajjakulnukit
  8. Anthony Andren
  9. Sean W Hou
  10. Ayush Trivedi
  11. Galloway Thurston
  12. Abhinav Anand
  13. Liang Yan
  14. Lucia Salamanca-Cardona
  15. Samuel D Welling
  16. Li Zhang
  17. Matthew R Pratt
  18. Kayvan R Keshari
  19. Haoqiang Ying
  20. Costas Lyssiotis
(2021)
Hyaluronic acid fuels pancreatic cancer cell growth
eLife 10:e62645.
https://doi.org/10.7554/eLife.62645

Share this article

https://doi.org/10.7554/eLife.62645

Further reading

    1. Cancer Biology
    2. Stem Cells and Regenerative Medicine
    Alison G Barber, Cynthia M Quintero ... Tannishtha Reya
    Research Article

    Despite advances in therapeutic approaches, lung cancer remains the leading cause of cancer-related deaths. To understand the molecular programs underlying lung cancer initiation and maintenance, we focused on stem cell programs that are normally extinguished with differentiation but can be reactivated during oncogenesis. Here, we have used extensive genetic modeling and patient-derived xenografts (PDXs) to identify a dual role for Msi2: as a signal that acts initially to sensitize cells to transformation, and subsequently to drive tumor propagation. Using Msi reporter mice, we found that Msi2-expressing cells were marked by a pro-oncogenic landscape and a preferential ability to respond to Ras and p53 mutations. Consistent with this, genetic deletion of Msi2 in an autochthonous Ras/p53-driven lung cancer model resulted in a marked reduction of tumor burden, delayed progression, and a doubling of median survival. Additionally, this dependency was conserved in human disease as inhibition of Msi2 impaired tumor growth in PDXs. Mechanistically, Msi2 triggered a broad range of pathways critical for tumor growth, including several novel effectors of lung adenocarcinoma. Collectively, these findings reveal a critical role for Msi2 in aggressive lung adenocarcinoma, lend new insight into the biology of this disease, and identify potential new therapeutic targets.

    1. Cancer Biology
    Rui Vasco Simoes, Rafael Neto Henriques ... Noam Shemesh
    Research Article

    Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.