Hyaluronic acid fuels pancreatic cancer cell growth
Abstract
Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; raw images have been provided for all western blots in the Source Data file.
Article and author information
Author details
Funding
National Cancer Institute (Cancer Biology Training Grant,T32AI007413)
- Peter K Kim
- Samuel A Kerk
Thompson Family Foundation (Research Grant)
- Kayvan R Keshari
STARR Cancer Consortium (Research Grant)
- Kayvan R Keshari
National Cancer Institute (Cancer Center Support Grant,P30CA008748)
- Kayvan R Keshari
American Association for Cancer Research (Pathway to Leadership award,13-70-25-LYSS)
- Costas Lyssiotis
V Foundation for Cancer Research (Junior Scholar Award,V2016-009)
- Costas Lyssiotis
Sidney Kimmel Foundation (Kimmel Scholar Award,SKF-16-005)
- Costas Lyssiotis
American Association for Cancer Research (NextGen Grant for Transformative Cancer Research,17-20-01-LYSS)
- Costas Lyssiotis
National Cancer Institute (Cancer Center Support Grant,P30 CA046592)
- Costas Lyssiotis
National Cancer Institute (R37CA237421)
- Costas Lyssiotis
National Cancer Institute (R01CA248160)
- Costas Lyssiotis
National Cancer Institute (Predoctoral Fellowship,F31CA243344)
- Peter K Kim
National Cancer Institute (R01CA244931)
- Costas Lyssiotis
National Institutes of Health (U24DK097153)
- Costas Lyssiotis
Charles Woodson Research Fund (Research Support)
- Costas Lyssiotis
UM Pediatric Brain Tumor Initiative (Research Support)
- Costas Lyssiotis
National Cancer Institute (F99/K00CA264414)
- Samuel A Kerk
National Institute of Child Health and Human Development (T32HD007505)
- Megan Radyk
National Cancer Institute (Pathway to Independence Award,K99CA241357)
- Christopher J Halbrook
National Institute of Diabetes and Digestive and Kidney Diseases (Postdoctoral Support,P30DK034933)
- Christopher J Halbrook
National Cancer Institute (F31CA24745701)
- Samuel A Kerk
National Cancer Institute (R01CA237466)
- Kayvan R Keshari
National Cancer Institute (R01CA252037)
- Kayvan R Keshari
National Cancer Institute (R21CA212958)
- Kayvan R Keshari
Stand Up To Cancer (Research Grant)
- Kayvan R Keshari
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal experiments were conducted in accordance with the Office of Laboratory Animal Welfare and approved by the Institutional Animal Care and Use Committees of the University of Michigan. Protocol#: PRO00008877
Copyright
© 2021, Kim et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 9,388
- views
-
- 937
- downloads
-
- 58
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
A high density of tumor-associated macrophages (TAMs) is associated with poorer prognosis and survival in breast cancer patients. Recent studies have shown that lipid accumulation in TAMs can promote tumor growth and metastasis in various models. However, the specific molecular mechanisms that drive lipid accumulation and tumor progression in TAMs remain largely unknown. Herein, we demonstrated that unsaturated fatty acids (FAs), unlike saturated ones, are more likely to form lipid droplets in murine macrophages. Specifically, unsaturated FAs, including linoleic acids (LA), activate the FABP4/CEBPα pathway, leading to triglyceride synthesis and lipid droplet formation. Furthermore, FABP4 enhances lipolysis and FA utilization by breast cancer cell lines, which promotes cancer cell migration in vitro and metastasis in vivo. Notably, a deficiency of FABP4 in murine macrophages significantly reduces LA-induced lipid metabolism. Therefore, our findings suggest FABP4 as a crucial lipid messenger that facilitates unsaturated FA-mediated lipid accumulation and lipolysis in TAMs, thus contributing to the metastasis of breast cancer.
-
- Cancer Biology
- Computational and Systems Biology
This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.