Hyaluronic acid fuels pancreatic cancer cell growth

  1. Peter K Kim
  2. Christopher J Halbrook
  3. Samuel A Kerk
  4. Megan Radyk
  5. Stephanie Wisner
  6. Daniel M Kremer
  7. Peter Sajjakulnukit
  8. Anthony Andren
  9. Sean W Hou
  10. Ayush Trivedi
  11. Galloway Thurston
  12. Abhinav Anand
  13. Liang Yan
  14. Lucia Salamanca-Cardona
  15. Samuel D Welling
  16. Li Zhang
  17. Matthew R Pratt
  18. Kayvan R Keshari
  19. Haoqiang Ying
  20. Costas A Lyssiotis  Is a corresponding author
  1. University of Michigan, United States
  2. The University of Texas MD Anderson Cancer Center, United States
  3. Memorial Sloan Kettering Cancer Center, United States
  4. University of Southern California, United States

Abstract

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; raw images have been provided for all western blots in the Source Data file.

Article and author information

Author details

  1. Peter K Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9382-7223
  2. Christopher J Halbrook

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  3. Samuel A Kerk

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Megan Radyk

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  5. Stephanie Wisner

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  6. Daniel M Kremer

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Peter Sajjakulnukit

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  8. Anthony Andren

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  9. Sean W Hou

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  10. Ayush Trivedi

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  11. Galloway Thurston

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  12. Abhinav Anand

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  13. Liang Yan

    Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  14. Lucia Salamanca-Cardona

    Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, United States
    Competing interests
    No competing interests declared.
  15. Samuel D Welling

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  16. Li Zhang

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  17. Matthew R Pratt

    Department of Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3205-5615
  18. Kayvan R Keshari

    Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  19. Haoqiang Ying

    Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  20. Costas A Lyssiotis

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    clyssiot@med.umich.edu
    Competing interests
    Costas A Lyssiotis, has received consulting fees from Astellas Pharmaceuticals and Odyssey Therapeutics and is an inventor on patents pertaining to Kras regulated metabolic pathways, redox control pathways in pancreatic cancer, and targeting the GOT1-pathway as a therapeutic approach (US Patent No: 2015126580-A1, 05/07/2015; US Patent No: 20190136238, 05/09/2019; International Patent No: WO2013177426-A2, 04/23/2015)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9309-6141

Funding

National Cancer Institute (Cancer Biology Training Grant,T32AI007413)

  • Peter K Kim
  • Samuel A Kerk

Thompson Family Foundation (Research Grant)

  • Kayvan R Keshari

STARR Cancer Consortium (Research Grant)

  • Kayvan R Keshari

National Cancer Institute (Cancer Center Support Grant,P30CA008748)

  • Kayvan R Keshari

American Association for Cancer Research (Pathway to Leadership award,13-70-25-LYSS)

  • Costas A Lyssiotis

V Foundation for Cancer Research (Junior Scholar Award,V2016-009)

  • Costas A Lyssiotis

Sidney Kimmel Foundation (Kimmel Scholar Award,SKF-16-005)

  • Costas A Lyssiotis

American Association for Cancer Research (NextGen Grant for Transformative Cancer Research,17-20-01-LYSS)

  • Costas A Lyssiotis

National Cancer Institute (Cancer Center Support Grant,P30 CA046592)

  • Costas A Lyssiotis

National Cancer Institute (R37CA237421)

  • Costas A Lyssiotis

National Cancer Institute (R01CA248160)

  • Costas A Lyssiotis

National Cancer Institute (Predoctoral Fellowship,F31CA243344)

  • Peter K Kim

National Cancer Institute (R01CA244931)

  • Costas A Lyssiotis

National Institutes of Health (U24DK097153)

  • Costas A Lyssiotis

Charles Woodson Research Fund (Research Support)

  • Costas A Lyssiotis

UM Pediatric Brain Tumor Initiative (Research Support)

  • Costas A Lyssiotis

National Cancer Institute (F99/K00CA264414)

  • Samuel A Kerk

National Institute of Child Health and Human Development (T32HD007505)

  • Megan Radyk

National Cancer Institute (Pathway to Independence Award,K99CA241357)

  • Christopher J Halbrook

National Institute of Diabetes and Digestive and Kidney Diseases (Postdoctoral Support,P30DK034933)

  • Christopher J Halbrook

National Cancer Institute (F31CA24745701)

  • Samuel A Kerk

National Cancer Institute (R01CA237466)

  • Kayvan R Keshari

National Cancer Institute (R01CA252037)

  • Kayvan R Keshari

National Cancer Institute (R21CA212958)

  • Kayvan R Keshari

Stand Up To Cancer (Research Grant)

  • Kayvan R Keshari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted in accordance with the Office of Laboratory Animal Welfare and approved by the Institutional Animal Care and Use Committees of the University of Michigan. Protocol#: PRO00008877

Copyright

© 2021, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,239
    views
  • 927
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter K Kim
  2. Christopher J Halbrook
  3. Samuel A Kerk
  4. Megan Radyk
  5. Stephanie Wisner
  6. Daniel M Kremer
  7. Peter Sajjakulnukit
  8. Anthony Andren
  9. Sean W Hou
  10. Ayush Trivedi
  11. Galloway Thurston
  12. Abhinav Anand
  13. Liang Yan
  14. Lucia Salamanca-Cardona
  15. Samuel D Welling
  16. Li Zhang
  17. Matthew R Pratt
  18. Kayvan R Keshari
  19. Haoqiang Ying
  20. Costas A Lyssiotis
(2021)
Hyaluronic acid fuels pancreatic cancer cell growth
eLife 10:e62645.
https://doi.org/10.7554/eLife.62645

Share this article

https://doi.org/10.7554/eLife.62645

Further reading

    1. Cancer Biology
    Samarjit Jana, Mainak Mondal ... Kumaravel Somasundaram
    Research Article

    In tumors with WT p53, alternate mechanisms of p53 inactivation are reported. Here, we have identified a long noncoding RNA, PITAR (p53 Inactivating TRIM28 Associated RNA), as an inhibitor of p53. PITAR is an oncogenic Cancer/testis lncRNA and is highly expressed in glioblastoma (GBM) and glioma stem-like cells (GSC). We establish that TRIM28 mRNA, which encodes a p53-specific E3 ubiquitin ligase, is a direct target of PITAR. PITAR interaction with TRIM28 RNA stabilized TRIM28 mRNA, which resulted in increased TRIM28 protein levels and reduced p53 steady-state levels due to enhanced p53 ubiquitination. DNA damage activated PITAR, in addition to p53, in a p53-independent manner, thus creating an incoherent feedforward loop to inhibit the DNA damage response by p53. While PITAR silencing inhibited the growth of WT p53 containing GSCs in vitro and reduced glioma tumor growth in vivo, its overexpression enhanced the tumor growth in a TRIM28-dependent manner and promoted resistance to Temozolomide. Thus, we establish an alternate way of p53 inactivation by PITAR, which maintains low p53 levels in normal cells and attenuates the DNA damage response by p53. Finally, we propose PITAR as a potential GBM therapeutic target.

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.