Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka

  1. Luisa F Arias Padilla
  2. Diana C Castañeda-Cortés
  3. Ivana F Rosa
  4. Omar D Moreno Acosta
  5. Ricardo S Hattori
  6. Rafael H Nóbrega
  7. Juan I Fernandino  Is a corresponding author
  1. Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Argentina
  2. Institute of Biosciences, São Paulo State University (UNESP), Brazil
  3. Salmonid Experimental Station at Campos do Jordão, Brazil

Abstract

The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of germ cells cystic proliferation. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Luisa F Arias Padilla

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana C Castañeda-Cortés

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  3. Ivana F Rosa

    Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Omar D Moreno Acosta

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  5. Ricardo S Hattori

    UPD-CJ, Salmonid Experimental Station at Campos do Jordão, Campos do Jordão, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Rafael H Nóbrega

    Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Juan I Fernandino

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    For correspondence
    fernandino@intech.gov.ar
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1754-2802

Funding

Agencia Nacional de Promoción Científica y Tecnológica (Grant 0366/12 and 2501/15)

  • Luisa F Arias Padilla

Fundação de Amparo à Pesquisa do Estado de São Paulo (14/07620-7 and 18/10265-5)

  • Rafael H Nóbrega

CONICET and São Paulo Research Foundation (International Cooperation Grant D 2979/16)

  • Ivana F Rosa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michel Bagnat, Duke University, United States

Publication history

  1. Received: September 3, 2020
  2. Accepted: February 28, 2021
  3. Accepted Manuscript published: March 1, 2021 (version 1)
  4. Version of Record published: March 10, 2021 (version 2)

Copyright

© 2021, Arias Padilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,146
    Page views
  • 144
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luisa F Arias Padilla
  2. Diana C Castañeda-Cortés
  3. Ivana F Rosa
  4. Omar D Moreno Acosta
  5. Ricardo S Hattori
  6. Rafael H Nóbrega
  7. Juan I Fernandino
(2021)
Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka
eLife 10:e62757.
https://doi.org/10.7554/eLife.62757

Further reading

    1. Developmental Biology
    Tsz Long Chu, Peikai Chen ... Kathryn Song Eng Cheah
    Research Article Updated

    Bone homeostasis is regulated by hormones such as parathyroid hormone (PTH). While PTH can stimulate osteo-progenitor expansion and bone synthesis, how the PTH-signaling intensity in progenitors is controlled is unclear. Endochondral bone osteoblasts arise from perichondrium-derived osteoprogenitors and hypertrophic chondrocytes (HC). We found, via single-cell transcriptomics, that HC-descendent cells activate membrane-type 1 metalloproteinase 14 (MMP14) and the PTH pathway as they transition to osteoblasts in neonatal and adult mice. Unlike Mmp14 global knockouts, postnatal day 10 (p10) HC lineage-specific Mmp14 null mutants (Mmp14ΔHC) produce more bone. Mechanistically, MMP14 cleaves the extracellular domain of PTH1R, dampening PTH signaling, and consistent with the implied regulatory role, in Mmp14ΔHC mutants, PTH signaling is enhanced. We found that HC-derived osteoblasts contribute ~50% of osteogenesis promoted by treatment with PTH 1–34, and this response was amplified in Mmp14ΔHC. MMP14 control of PTH signaling likely applies also to both HC- and non-HC-derived osteoblasts because their transcriptomes are highly similar. Our study identifies a novel paradigm of MMP14 activity-mediated modulation of PTH signaling in the osteoblast lineage, contributing new insights into bone metabolism with therapeutic significance for bone-wasting diseases.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zengdi Zhang, Zan Huang ... Hai-Bin Ruan
    Research Article Updated

    In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.