Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka

  1. Luisa F Arias Padilla
  2. Diana C Castañeda-Cortés
  3. Ivana F Rosa
  4. Omar D Moreno Acosta
  5. Ricardo S Hattori
  6. Rafael H Nóbrega
  7. Juan I Fernandino  Is a corresponding author
  1. Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Argentina
  2. Institute of Biosciences, São Paulo State University (UNESP), Brazil
  3. Salmonid Experimental Station at Campos do Jordão, Brazil

Abstract

The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of germ cells cystic proliferation. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Luisa F Arias Padilla

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana C Castañeda-Cortés

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  3. Ivana F Rosa

    Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Omar D Moreno Acosta

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  5. Ricardo S Hattori

    UPD-CJ, Salmonid Experimental Station at Campos do Jordão, Campos do Jordão, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Rafael H Nóbrega

    Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Juan I Fernandino

    Laboratorio de Biologia del Desarrollo, Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
    For correspondence
    fernandino@intech.gov.ar
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1754-2802

Funding

Agencia Nacional de Promoción Científica y Tecnológica (Grant 0366/12 and 2501/15)

  • Luisa F Arias Padilla

Fundação de Amparo à Pesquisa do Estado de São Paulo (14/07620-7 and 18/10265-5)

  • Rafael H Nóbrega

CONICET and São Paulo Research Foundation (International Cooperation Grant D 2979/16)

  • Ivana F Rosa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Arias Padilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,484
    views
  • 187
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luisa F Arias Padilla
  2. Diana C Castañeda-Cortés
  3. Ivana F Rosa
  4. Omar D Moreno Acosta
  5. Ricardo S Hattori
  6. Rafael H Nóbrega
  7. Juan I Fernandino
(2021)
Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka
eLife 10:e62757.
https://doi.org/10.7554/eLife.62757

Share this article

https://doi.org/10.7554/eLife.62757

Further reading

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.