1. Immunology and Inflammation
Download icon

NHR-49/PPAR-α and HLH-30/TFEB cooperate for C. elegans host defense via a flavin-containing monooxygenase

  1. Khursheed A Wani
  2. Debanjan Goswamy
  3. Stefan Taubert
  4. Ramesh Ratnappan
  5. Arjumand Ghazi
  6. Javier E Irazoqui  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. University of British Columbia, Canada
  3. University of Pittsburgh, United States
Research Article
  • Cited 2
  • Views 709
  • Annotations
Cite this article as: eLife 2021;10:e62775 doi: 10.7554/eLife.62775

Abstract

The model organism Caenorhabditis elegans mounts transcriptional defense responses against intestinal bacterial infections that elicit overlapping starvation and infection responses, the regulation of which is not well understood. Direct comparison of C. elegans that were starved or infected with Staphylococcus aureus revealed a large infection-specific transcriptional signature, which was almost completely abrogated by deletion of transcription factor hlh-30/TFEB, except for six genes including a flavin-containing monooxygenase (FMO) gene, fmo-2/FMO5. Deletion of fmo-2/FMO5 severely compromised infection survival, thus identifying the first FMO with innate immunity functions in animals. Moreover, fmo-2/FMO5 induction required the nuclear hormone receptor, NHR-49/PPAR-α, which controlled host defense cell non-autonomously. These findings reveal an infection-specific host response to S. aureus, identify HLH-30/TFEB as its main regulator, reveal FMOs as important innate immunity effectors in animals, and identify the mechanism of FMO regulation through NHR-49/PPAR-α during S. aureus infection, with implications for host defense and inflammation in higher organisms.

Data availability

RNA-seq reads are deposited in SRA (NCBI/NIH)

The following data sets were generated

Article and author information

Author details

  1. Khursheed A Wani

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Debanjan Goswamy

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefan Taubert

    Medical Genetics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2432-7257
  4. Ramesh Ratnappan

    Oncology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7055-9043
  5. Arjumand Ghazi

    Pediatrics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5859-4206
  6. Javier E Irazoqui

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Javier.Irazoqui@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6553-1329

Funding

National Institute of General Medical Sciences (GM101056)

  • Javier E Irazoqui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Scott F Leiser, University of Michigan, United States

Publication history

  1. Received: September 4, 2020
  2. Accepted: April 29, 2021
  3. Accepted Manuscript published: May 12, 2021 (version 1)
  4. Accepted Manuscript updated: May 17, 2021 (version 2)
  5. Version of Record published: May 21, 2021 (version 3)

Copyright

© 2021, Wani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 709
    Page views
  • 121
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    Isobel C Mouat et al.
    Research Article Updated

    Epstein-Barr virus (EBV) infection is associated with rheumatoid arthritis (RA) in adults, though the nature of the relationship remains unknown. Herein, we have examined the contribution of viral infection to the severity of arthritis in mice. We have provided the first evidence that latent gammaherpesvirus infection enhances clinical arthritis, modeling EBV’s role in RA. Mice latently infected with a murine analog of EBV, gammaherpesvirus 68 (γHV68), develop more severe collagen-induced arthritis and a Th1-skewed immune profile reminiscent of human disease. We demonstrate that disease enhancement requires viral latency and is not due to active virus stimulation of the immune response. Age-associated B cells (ABCs) are associated with several human autoimmune diseases, including arthritis, though their contribution to disease is not well understood. Using ABC knockout mice, we have provided the first evidence that ABCs are mechanistically required for viral enhancement of disease, thereby establishing that ABCs are impacted by latent gammaherpesvirus infection and provoke arthritis.

    1. Immunology and Inflammation
    David Taussig, Yariv Wine
    Insight

    A mouse model supports the hypothesis that latent Epstein–Barr virus exacerbates the symptoms of rheumatoid arthritis.