Molecular tracking devices quantify antigen distribution and archiving in the murine lymph node

  1. Shannon M Walsh
  2. Ryan M Sheridan
  3. Erin D Lucas
  4. Thu A Doan
  5. Brian C Ware
  6. Johnathon Schafer
  7. Rui Fu
  8. Matthew A Burchill
  9. Jay R Hesselberth
  10. Beth Ann Jiron Tamburini  Is a corresponding author
  1. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, United States
  2. RNA Bioscience Initiative, University of Colorado School of Medicine, United States
  3. Immunology Graduate Program, University of Colorado School of Medicine, United States
  4. Department of Immunology and Microbiology, University of Colorado School of Medicine, United States
  5. Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, United States
5 figures, 1 table and 1 additional file

Figures

Figure 1 with 2 supplements
Antigen-psDNA conjugates undergo normal processing and presentation.

(a) Schematic of ovalbumin (PDB code 1ova) antigen conjugation to barcoded DNA with phosphodiester and phosphorothioate DNA linkages and a 3′ biotin label (circle with B inside). Sulfur replaces a …

Figure 1—source data 1

Antigen tags and other oligonucleotide sequences used in qPCR and single-cell experiments.

https://cdn.elifesciences.org/articles/62781/elife-62781-fig1-data1-v2.xlsx
Figure 1—figure supplement 1
Visualization of antigen and DNA in different cell types.

(a) Gating and single-color staining controls for anti-ovalbumin (ova) and streptavidin 1 day post addition of ova-psDNA. (b) Flow cytometry of SV-40 transformed endothelial cells (SVEC) with …

Figure 1—figure supplement 2
DNA barcode is not retained in cell media over time.

(a) Bone marrow- derived dendritic cells (BMDCs) were grown for 7 days and cultured in GM-CSF. After 7 days, 5 mg of either pDNA, psDNA, ova-pDNA, or ova-psDNA were added to the culture media, and …

Figure 2 with 2 supplements
Antigen-psDNA conjugates elicit a robust immune response in vivo.

(a) Mice were immunized in the footpad with ovalbumin (ova) alone or ova-psDNA with or without polyI:C/aCD40 or polyI:C. After 7 days, draining popliteal lymph nodes (LNs) were harvested and cells …

Figure 2—figure supplement 1
Gating strategies.

(a) Gating strategy for tetramer staining and intracellular cytokine staining of CD8 T cells. (b) Gating strategy used for cell sorting prior to single-cell RNA sequencing.

Figure 2—figure supplement 2
Vaccinia plus ovalbumin (ova)-DNA conjugate induces ova-specific T cell response and archiving.

(a) Mice were vaccinated in the footpad with 10 µg of ova-pDNA (phosphodiester backbone) or ova-psDNA (phosphorothioate backbone) with or without vaccinia virus (103 PFU). Each barcode conjugate …

Figure 3 with 5 supplements
Dynamic acquisition of antigen-psDNA conjugates in lymph node tissue.

(a, d, g, j) Uniform manifold approximation and projections (UMAPs) are shown for dendritic cells (DCs) (a, d), lymphatic endothelial cells (LECs) (g), and fibroblastic reticular cells (FRC)s (j) at …

Figure 3—source data 1

Comparison of relative ovalbumin (ova) signal for cell types shown in Figure 3—figure supplements 3, 4b, and 5b.

A two-sided Wilcoxon rank-sum test was used to compare relative ova signal for each cell type. Relative ova signal was calculated by dividing antigen counts for each cell by the median antigen counts for T and B cells. The Bonferroni method was used to correct for multiple comparisons. The number of cells in each group (n cells), fraction of the total cells for the sample (frac cells), median relative ova signal, test statistic (statistic), estimation of the median difference (estimate), and confidence interval (conf.low, conf.high) are included.

https://cdn.elifesciences.org/articles/62781/elife-62781-fig3-data1-v2.xlsx
Figure 3—figure supplement 1
Detection of DNA barcode requires conjugation to ovalbumin (ova).

Mice were vaccinated with ova-psDNA, psDNA, and pDNA with IE3 CFU of VV-WR. Each DNA injected had a unique barcode sequence for detection during sequencing. Counts of ova-psDNA, psDNA, and pDNA for …

Figure 3—figure supplement 2
Antigen counts were independent of total mRNA counts.

Antigen counts were compared with total mRNA counts for each cell for dendritic cells (DCs) (a, b), lymphatic endothelial cells (LECs) (c, d), and FRCs (e, f). Pearson’s correlation coefficient and …

Figure 3—figure supplement 3
Lymphatic endothelial cell (LEC) types associated with high antigen counts 2 days after vaccination.

(a) A uniform manifold approximation and projection (UMAP) is shown for LEC types, epithelial cells, B cells and T cells identified for the day 2 time point. (b) Relative ovalbumin (ova) signal is …

Figure 3—figure supplement 4
Antigen is held by PD-L1/ICAM1 high lymphatic endothelial cells (LECs).

(a) Gating strategy for LECs in the dLN with markers for ICAM1 and PD-L1. (b) Representative flow plots of antigen held by LECs 14 days following subcutaneous immunization with OVA488 (10 μg/site), …

Figure 3—figure supplement 5
FRC cell types with high antigen counts at day 2 post vaccination.

(a) Uniform manifold approximation and projection (UMAP) is shown for FRC cell types, B cells, and T cells identified for the day 2 time point. (b) Relative ovalbumin signal is shown for each cell …

Antigen-based classification of dendritic cells (DCs) and validation of genes associated with DC activation.

(a, e) Day 2 (a) and day 14 (e) cDC2 Tbet- cells containing low and high antigen counts were identified using a two-component mixture model. A uniform manifold approximation and projection (UMAP) is …

Figure 4—source data 1

Genes associated with ovalbumin (ova)-high cells for dendritic cell (DC), FRC, and lymphatic endothelial cell (LEC) subtypes.

Ova-low and ova-high cells were independently identified for each cell type shown in Figure 3 using a Gaussian mixture model implemented with the R package mixtools. Differentially expressed genes were identified using a Wilcoxon rank-sum test performed using the R package presto (wilcoxauc). The Benjamini–Hochberg method was used to correct for multiple comparisons. Genes were filtered to only include those with an adjusted p-value<0.05, log fold-change >0.25, area under the receiver operator curve (AUC) >0.5, and with at least 50% of ova-high cells expressing the gene. The average expression, log fold-change, test statistic (statistic), AUC, percentage of ova-high cells that express the gene (pct_in), and percentage of ova-low cells that express the gene (pct_out) are included.

https://cdn.elifesciences.org/articles/62781/elife-62781-fig4-data1-v2.xlsx
Antigen-based classification of lymphatic endothelial cells (LECs) and identification of marker genes.

(a) Day 14 LECs were classified into antigen-high and antigen-low using a two-component Gaussian mixture model. A uniform manifold approximation and projection (UMAP) is shown for antigen-low and …

Figure 5—source data 1

Genes associated with ovalbumin (ova)-low and ova-high cells for dendritic cells (DCs), FRCs, and lymphatic endothelial cells (LECs).

Ova-low and ova-high cells were identified independently for DCs, FRCs, and LECs using a Gaussian mixture model implemented with the R package mixtools. Differentially expressed genes were identified as described for Figure 4—source data 1.

https://cdn.elifesciences.org/articles/62781/elife-62781-fig5-data1-v2.xlsx

Tables

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
AntibodyAnti-mouse CD40 (Rat monoclonal)BioXcellCat#BE0016-2
AntibodyAnti-ovalbumin (rabbit monoclonal)AbcamAb1816881:100
AntibodyAnti-rabbit IgG PE (Donkey polyclonal)BiolegendCat# 406421
RRID:AB_2563484
1:100
AntibodyAnti-mouse CD45 BV510 (Rat monoclonal)BiolegendCat#103138
RRID:AB_2563061
1:300
AntibodyAnti-mouse CD45 PE (Rat monoclonal)BiolegendCat#103106 RRID:AB_3129711:300
AntibodyAnti-mouse podoplanin APC (Hamster monoclonal)BiolegendCat#127410
RRID:AB_10613649
1:200
AntibodyAnti-mouse CD31 PerCP-Cy5.5 (Rat monoclonal)BiolegendCat#102420
RRID:AB_10613644
1:200
AntibodyAnti-mouse PD-L1 BV421 (Rat monoclonal)BiolegendCat#124315
RRID:AB_10897097
1:200
AntibodyAnti-mouse CD8a APC-Cy7
(Rat monoclonal)
BiolegendCat#100714
RRID:AB_312753
1:400
AntibodyAnti-mouse CD44 PerCP-Cy5.5 (Rat monoclonal)BiolegendCat# 103032
RRID:AB_2076204
1:400
AntibodyAnti-mouse B220/CD45R BV510 (Rat monoclonal)BiolegendCat# 103248
RRID:AB_2650679
1:300
AntibodyAnti-mouse B220/CD45R PE (Rat monoclonal)BiolegendCat# 103208
RRID:AB_312993
1:300
AntibodyAnti-mouse CD11c APC Cy7 (Hamster monoclonal)BiolegendCat#117324 RRID:AB_8306491:400
AntibodyAnti-mouse CD11b PE-Cy7
(Rat monoclonal)
BiolegendCat#1012161:300
Peptide, recombinant proteinStreptavidin BV421BiolegendCat#4052261:1000
Peptide, recombinant proteinStreptavidin AF488Thermo Fisher ScientificCat#S112231:1000
Chemical compound, drugPolyI:CInvivogenCat#Vac-PIC
Chemical compound, drugNystatinSigma AldrichCat#N4014
Chemical compound, drugViolet proliferation dyeBD BiosciencesCat#562158
Chemical compound, drugCFSEBD BiosciencesCat#565082
Strain, strain background (Mus musculus)WT: C57BL/6Charles River LabsC57BL/6 (B6) Mouse Inbred 027
Strain, strain background (M. musculus)OT1: C57BL/6-Tg(TcraTcrb)
1100Mjb/J
Jackson LabsJAX: 003831
Cell line (M. musculus)SVEC4-10ATCCATCC CRL2181
Primary cells (M. musculus)mLECCell BiologicsC57-6092

Additional files

Download links