TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex

  1. Nicole Merritt
  2. Keith Garcia
  3. Dushyandi Rajendran
  4. Zhen-Yuan Lin
  5. Xiaomeng Zhang
  6. Katrina M Mitchell
  7. Nicholas Borcherding
  8. Colleen Fullenkamp
  9. Michael S Chimenti
  10. Anne-Claude Gingras
  11. Kieran F Harvey
  12. Munir R Tanas  Is a corresponding author
  1. University of Iowa, United States
  2. Mount Sinai Hospital, Canada
  3. Peter MacCallum Cancer Centre, Australia
  4. Washington University, United States
  5. Lunenfeld-Tanenbaum Research Institute, Canada

Abstract

Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers.

Data availability

The accession number for the RNA-Seq data reported in this paper for NIH 3T3 cells is GEO: GSE152736. The accession number for the RNA-Seq data reported in this paper for SW872 cells is GEO: GSE152737. The accession number for the ChIP-Seq data reported in this paper is GEO: GSE152778. The accession number for the ATAC-Seq data reported in this paper is GEO: GSE152733. The accession number for the H3K27ac ChIP-Seq data reported in this paper is GEO: GSE168201. The accession number for the RNA-Seq data after YEATS2 and ZZZ3 knock-down is GEO: GSE168205.

The following data sets were generated

Article and author information

Author details

  1. Nicole Merritt

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Keith Garcia

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dushyandi Rajendran

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhen-Yuan Lin

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaomeng Zhang

    Peter MacCallum Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Katrina M Mitchell

    Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicholas Borcherding

    Department of Pathology and Immunology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Colleen Fullenkamp

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael S Chimenti

    Iowa Institute of Human Genetics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anne-Claude Gingras

    Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6090-4437
  11. Kieran F Harvey

    Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Munir R Tanas

    Pathology, University of Iowa, Iowa City, United States
    For correspondence
    munir-tanas@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6779-2642

Funding

Veterans Health Administration Merit Review Program (1 I01 BX003644-01)

  • Munir R Tanas

National Institutes of Health (R01 CA237031-01A1)

  • Munir R Tanas

National Health and Medical Research Council (APP1078220)

  • Kieran F Harvey

Canadian Institutes of Health Research (FDN 144301)

  • Anne-Claude Gingras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to an approved institutional animal care and use committee (IACUC) protocol (#9052228-008 ) of the University of Iowa. All injections for mouse xenograft experiments were performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2021, Merritt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,011
    views
  • 533
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole Merritt
  2. Keith Garcia
  3. Dushyandi Rajendran
  4. Zhen-Yuan Lin
  5. Xiaomeng Zhang
  6. Katrina M Mitchell
  7. Nicholas Borcherding
  8. Colleen Fullenkamp
  9. Michael S Chimenti
  10. Anne-Claude Gingras
  11. Kieran F Harvey
  12. Munir R Tanas
(2021)
TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex
eLife 10:e62857.
https://doi.org/10.7554/eLife.62857

Share this article

https://doi.org/10.7554/eLife.62857

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.