TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex

  1. Nicole Merritt
  2. Keith Garcia
  3. Dushyandi Rajendran
  4. Zhen-Yuan Lin
  5. Xiaomeng Zhang
  6. Katrina M Mitchell
  7. Nicholas Borcherding
  8. Colleen Fullenkamp
  9. Michael S Chimenti
  10. Anne-Claude Gingras
  11. Kieran F Harvey
  12. Munir R Tanas  Is a corresponding author
  1. University of Iowa, United States
  2. Mount Sinai Hospital, Canada
  3. Peter MacCallum Cancer Centre, Australia
  4. Washington University, United States
  5. Lunenfeld-Tanenbaum Research Institute, Canada

Abstract

Epithelioid hemangioendothelioma (EHE) is a vascular sarcoma that metastasizes early in its clinical course and lacks an effective medical therapy. The TAZ-CAMTA1 and YAP-TFE3 fusion proteins are chimeric transcription factors and initiating oncogenic drivers of EHE. A combined proteomic/genetic screen in human cell lines identified YEATS2 and ZZZ3, components of the Ada2a-containing histone acetyltransferase (ATAC) complex, as key interactors of both fusion proteins despite the dissimilarity of the C terminal fusion partners CAMTA1 and TFE3. Integrative next generation sequencing approaches in human and murine cell lines showed that the fusion proteins drive a unique transcriptome by simultaneously hyperactivating a TEAD-based transcriptional program and modulating the chromatin environment via interaction with the ATAC complex. Interaction of the ATAC complex with both fusion proteins indicates that it is a key oncogenic driver and unifying enzymatic therapeutic target for this sarcoma. This study presents an approach to mechanistically dissect how chimeric transcription factors drive the formation of human cancers.

Data availability

The accession number for the RNA-Seq data reported in this paper for NIH 3T3 cells is GEO: GSE152736. The accession number for the RNA-Seq data reported in this paper for SW872 cells is GEO: GSE152737. The accession number for the ChIP-Seq data reported in this paper is GEO: GSE152778. The accession number for the ATAC-Seq data reported in this paper is GEO: GSE152733. The accession number for the H3K27ac ChIP-Seq data reported in this paper is GEO: GSE168201. The accession number for the RNA-Seq data after YEATS2 and ZZZ3 knock-down is GEO: GSE168205.

The following data sets were generated

Article and author information

Author details

  1. Nicole Merritt

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Keith Garcia

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dushyandi Rajendran

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhen-Yuan Lin

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaomeng Zhang

    Peter MacCallum Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Katrina M Mitchell

    Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicholas Borcherding

    Department of Pathology and Immunology, Washington University, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Colleen Fullenkamp

    Pathology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael S Chimenti

    Iowa Institute of Human Genetics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anne-Claude Gingras

    Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6090-4437
  11. Kieran F Harvey

    Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Munir R Tanas

    Pathology, University of Iowa, Iowa City, United States
    For correspondence
    munir-tanas@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6779-2642

Funding

Veterans Health Administration Merit Review Program (1 I01 BX003644-01)

  • Munir R Tanas

National Institutes of Health (R01 CA237031-01A1)

  • Munir R Tanas

National Health and Medical Research Council (APP1078220)

  • Kieran F Harvey

Canadian Institutes of Health Research (FDN 144301)

  • Anne-Claude Gingras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to an approved institutional animal care and use committee (IACUC) protocol (#9052228-008 ) of the University of Iowa. All injections for mouse xenograft experiments were performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2021, Merritt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,102
    views
  • 540
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole Merritt
  2. Keith Garcia
  3. Dushyandi Rajendran
  4. Zhen-Yuan Lin
  5. Xiaomeng Zhang
  6. Katrina M Mitchell
  7. Nicholas Borcherding
  8. Colleen Fullenkamp
  9. Michael S Chimenti
  10. Anne-Claude Gingras
  11. Kieran F Harvey
  12. Munir R Tanas
(2021)
TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex
eLife 10:e62857.
https://doi.org/10.7554/eLife.62857

Share this article

https://doi.org/10.7554/eLife.62857

Further reading

    1. Cancer Biology
    Rui Vasco Simoes, Rafael Neto Henriques ... Noam Shemesh
    Research Article

    Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.

    1. Cancer Biology
    2. Medicine
    Patrick Brandt, Dawayne Whittington ... Rebekah L Layton
    Research Article

    A doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their postgraduate professional roles. We report the outcomes of this program over a 5-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences. A major goal of the program was to enhance trainees’ skill development and expertise in careers of interest. The benefits of the internship program for interns, host/employer, and supervisor/principal investigator were assessed using a mixed-methods approach, including surveys with closed- and open-ended responses as well as focus group interviews. Balancing stakeholder interests is key to creating a sustainable program with widespread support; hence, the level of support from internship hosts and faculty members were the key metrics analyzed throughout. We hypothesized that once a successful internship program was implemented, faculty culture might shift to be more accepting of internships; indeed, the data quantifying faculty attitudes support this. Furthermore, host motivation and performance expectations of interns were compared with results achieved, and this data revealed both expected and surprising benefits to hosts. Data suggests a myriad of benefits for each stakeholder group, and themes are cataloged and discussed. Program outcomes, evaluation data, policies, resources, and best practices developed through the implementation of this program are shared to provide resources that facilitate the creation of similar internship programs at other institutions. Program development was initially spurred by National Institutes of Health pilot funding, thereafter, successfully transitioning from a grant-supported model, to an institutionally supported funding model to achieve long-term programmatic sustainability.