Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets

  1. Valeria Zoni
  2. Rasha Khaddaj
  3. Pablo Campomanes
  4. Abdou Rachid Thiam
  5. Roger Schneiter
  6. Stefano Vanni  Is a corresponding author
  1. University of Fribourg, Switzerland
  2. Laboratoire de Physique de l'École Normale Supérieure, France

Abstract

Cells store energy in the form of neutral lipids packaged into micrometer-sized organelles named lipid droplets (LD). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of neutral lipids to be stored in LD, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, that is enriched at sites of LD formation, promotes the packaging of neutral lipids into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LD and promote accumulation of neutral lipids in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.

Data availability

Data Availability: All source data, input files for MD simulations and statistical analyses can be found at the following DOI: http://doi.org/10.5281/zenodo.4457468

The following data sets were generated

Article and author information

Author details

  1. Valeria Zoni

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Rasha Khaddaj

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Pablo Campomanes

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Abdou Rachid Thiam

    ENS, Université PSL, CNRS, Laboratoire de Physique de l'École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7488-4724
  5. Roger Schneiter

    Departemnt of Biology, University of Fribourg, Fribourg, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9102-8396
  6. Stefano Vanni

    Department of Biology, University of Fribourg, Fribourg, Switzerland
    For correspondence
    stefano.vanni@unifr.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2146-1140

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (163966)

  • Valeria Zoni
  • Pablo Campomanes
  • Stefano Vanni

Novartis Stiftung für Medizinisch-Biologische Forschung (19B140)

  • Roger Schneiter

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_17303)

  • Roger Schneiter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia Bassereau, Institut Curie, France

Version history

  1. Received: September 7, 2020
  2. Accepted: January 31, 2021
  3. Accepted Manuscript published: February 1, 2021 (version 1)
  4. Version of Record published: February 19, 2021 (version 2)

Copyright

© 2021, Zoni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,731
    Page views
  • 505
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valeria Zoni
  2. Rasha Khaddaj
  3. Pablo Campomanes
  4. Abdou Rachid Thiam
  5. Roger Schneiter
  6. Stefano Vanni
(2021)
Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets
eLife 10:e62886.
https://doi.org/10.7554/eLife.62886

Share this article

https://doi.org/10.7554/eLife.62886

Further reading

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.