ImmunoCluster provides a computational framework for the non-specialist to profile high- dimensional cytometry data

Abstract

High dimensional cytometry is an innovative tool for immune monitoring in health and disease, it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of large multiparametric datasets usually requires specialist computational knowledge. Here we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster) an R package for immune profiling cellular heterogeneity in high dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a non-specialist. The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users' needs. The protocol consists of three core computational stages: 1, data import and quality control; 2, dimensionality reduction and unsupervised clustering; and 3, annotation and differential testing, all contained within an R-based open-source framework.

Data availability

The liquid mass cytometry dataset is avaiable from FlowRepository (http://flowrepository.org/id/FR-FCM-Z244).Imaging and flow cytometry datasets have been deposited to Dryad under the following DOIs: 10.5061/dryad.gf1vhhmpr, 10.5061/dryad.4b8gthtcf, 10.5061/dryad.3n5tb2rhd

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. James W Opzoomer

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Jessica A Timms

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3687-9312
  3. Kevin Blighe

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Thanos P Mourikis

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Nicolas Chapuis

    Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université, Université Paris Descartes, Paris, France
    Competing interests
    No competing interests declared.
  6. Richard Bekoe

    UCL Cancer Institute, Paul O'Gorman Building, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Sedigeh Kareemaghay

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Paola Nocerino

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Benedetta Apollonio

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. Alan G Ramsay

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0452-0420
  11. Mahvash Tavassoli

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Claire Harrison

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine; Haematology Department, Guy's Hospital, London, SE1 1UL, United Kingdom, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  13. Francesca D Ciccarelli

    Comprehensive Cancer Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  14. Peter Parker

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine; Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  15. Michaela Fontenay

    Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université, Université Paris Descartes, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5492-6349
  16. Paul R Barber

    Molecular Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8595-1141
  17. James N Arnold

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    For correspondence
    james.n.arnold@kcl.ac.uk
    Competing interests
    No competing interests declared.
  18. Shahram Kordasti

    School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine,, King's College London, London, United Kingdom
    For correspondence
    shahram.kordasti@kcl.ac.uk
    Competing interests
    Shahram Kordasti, Honoraria: Beckman Coulter, GWT-TUD, Alexion. Consulting or Advisory Role: Syneos Health.Research Funding: Celgene, Novartis pharmaceutical.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0347-4207

Funding

Cancer Research UK (A29283)

  • Jessica A Timms
  • Shahram Kordasti

Aplastic Anemia and MDS International Foundation

  • Jessica A Timms
  • Shahram Kordasti

Blood Cancer UK

  • Jessica A Timms
  • Shahram Kordasti

H2020 European Research Council (335326)

  • James W Opzoomer
  • James N Arnold

Medical Research Council (MR/N013700/1)

  • James W Opzoomer

Medical Research Council (Doctoral Training Partnership in Biomedical Sciences)

  • James W Opzoomer

Rosetrees Trust (M117-F2)

  • Sedigeh Kareemaghay
  • Mahvash Tavassoli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Formalin-fixed paraffin-embedded (FFPE) DLBCL tumor tissue was obtained from King's College Hospital, in accordance with the Declaration of Helsinki and approved by the UK National Research Ethics Committee (reference 13/NW/0040).Head and neck squamous cell carcinoma (HNSCC) tissue was obtained from King's College Hospital, consent was attained by the King Guy's & St Thomas' Research Biobank, within King's Health Partners Integrated Cancer Centre.The non-interventional study which collected bone marrow samples from elderly healthy donors was approved by the ethical committee of Cochin-Port Royal Hospital (Paris, France) (CLEP Decision N{degree sign}: AAA-2020-08039).

Reviewing Editor

  1. Simon Yona, The Hebrew University of Jerusalem, Israel

Publication history

  1. Received: September 8, 2020
  2. Accepted: April 22, 2021
  3. Accepted Manuscript published: April 30, 2021 (version 1)
  4. Version of Record published: May 11, 2021 (version 2)

Copyright

© 2021, Opzoomer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,316
    Page views
  • 374
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James W Opzoomer
  2. Jessica A Timms
  3. Kevin Blighe
  4. Thanos P Mourikis
  5. Nicolas Chapuis
  6. Richard Bekoe
  7. Sedigeh Kareemaghay
  8. Paola Nocerino
  9. Benedetta Apollonio
  10. Alan G Ramsay
  11. Mahvash Tavassoli
  12. Claire Harrison
  13. Francesca D Ciccarelli
  14. Peter Parker
  15. Michaela Fontenay
  16. Paul R Barber
  17. James N Arnold
  18. Shahram Kordasti
(2021)
ImmunoCluster provides a computational framework for the non-specialist to profile high- dimensional cytometry data
eLife 10:e62915.
https://doi.org/10.7554/eLife.62915

Further reading

    1. Computational and Systems Biology
    Robert West, Hadrien Delattre ... Orkun S Soyer
    Research Article Updated

    Cycling of co-substrates, whereby a metabolite is converted among alternate forms via different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites that act as cycled co-substrates in different parts of central metabolism. Here, we develop a mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the primary enzyme catalysing that reaction. Using analytical methods, we show that this additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. Expanding from this insight and using simulations, we show that regulation of these two parameters can allow regulation of flux dynamics in branched and coupled pathways. To support these theoretical insights, we analysed existing flux measurements and enzyme levels from the central carbon metabolism and identified several reactions that could be limited by the dynamics of co-substrate cycling. We discuss how the limitations imposed by co-substrate cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We conclude that measuring and controlling co-substrate dynamics is crucial for understanding and engineering metabolic fluxes in cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Hossein Shahabi, Dileep R Nair, Richard M Leahy
    Research Article

    Seizure generation, propagation, and termination occur through spatiotemporal brain networks. In this paper, we demonstrate the significance of large-scale brain interactions in high-frequency (80-200 Hz) for identification of the epileptogenic zone (EZ) and seizure evolution. To incorporate the continuity of neural dynamics, here we have modeled brain connectivity constructed from stereoelectroencephalography (SEEG) data during seizures using multilayer networks. After introducing a new measure of brain connectivity for temporal networks, named multilayer eigenvector centrality (mlEVC), we applied a consensus hierarchical clustering on the developed model to identify the epileptogenic zone (EZ) as a cluster of nodes with distinctive brain connectivity in the ictal period. Our algorithm could successfully predict electrodes inside the resected volume as EZ for 88% of participants, who all were seizure-free for at least 12 months after surgery. Our findings illustrated significant and unique desynchronization between EZ and the rest of the brain in early to mid-seizure. We showed that aging and duration of epilepsy intensify this desynchronization, which can be the outcome of abnormal neuroplasticity. Additionally, we illustrated that seizures evolve with various network topologies, confirming the existence of different epileptogenic networks in each patient. Our findings suggest not only the importance of early intervention in epilepsy but the possible factor which correlates with disease severity. Moreover, by analyzing the propagation patterns of different seizures, we asserted the necessity of collecting sufficient data for identifying the epileptogenic networks.