Abstract

Collagens are a primary component of the extracellular matrix and are functional ligands for the inhibitory immune receptor leukocyte associated immunoglobulin-like receptor (LAIR)-1. LAIR-2 is a secreted protein that can act as a decoy receptor by binding collagen with higher affinity than LAIR-1. We propose that collagens promote immune evasion by interacting with LAIR-1 expressed on immune cells, and that LAIR-2 releases LAIR-1 mediated immune suppression. Analysis of public human datasets show that collagens, LAIR-1 and LAIR-2 have unique and overlapping associations with survival in certain tumors. We designed a dimeric LAIR-2 with a functional IgG1 Fc tail, NC410, and showed that NC410 increases human T cell expansion and effector function in vivo in a mouse xenogeneic-graft versus-host disease model. In humanized mouse tumor models NC410 reduces tumor growth that is dependent on T cells. Immunohistochemical analysis of human tumors shows that NC410 binds to collagen-rich areas where LAIR-1+ immune cells are localized. Our findings show that NC410 might be a novel strategy for cancer immunotherapy for immune-excluded tumors.

Data availability

Source codes were provided for Figure 1, Figure 2 and Supplemental Figure 1

The following previously published data sets were used

Article and author information

Author details

  1. M Ines Pascoal Ramos

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3644-6517
  2. Linjie Tian

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    Linjie Tian, LT, CS, AP, JS, JB, ZC, LL, SL and DF are employees from Nextcure. Nextcure holds a patent on NC410. (PCT/US20 17/0453 10)..
  3. Emma J de Ruiter

    Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  4. Chang Song

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  5. Ana Paucarmayta

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  6. Akashdip Singh

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5326-8826
  7. Eline Elshof

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Saskia V Vijver

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  9. Jahangheer Shaik

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  10. Jason Bosiacki

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  11. Zachary Cusumano

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  12. Christina Jensen

    Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
    Competing interests
    No competing interests declared.
  13. Nicholas Willumsen

    Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
    Competing interests
    No competing interests declared.
  14. Morten A Karsdal

    Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
    Competing interests
    No competing interests declared.
  15. Linda Liu

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  16. Sol Langermann

    Nextcure, Nextcure, Beltsville, United States
    Competing interests
    No competing interests declared.
  17. Stefan Willems

    Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  18. Dallas Flies

    Nextcure, Nextcure, Beltsville, United States
    For correspondence
    fliesd@nextcure.com
    Competing interests
    No competing interests declared.
  19. Linde Meyaard

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    L.Meyaard@umcutrecht.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0707-4793

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vici 918.15.608)

  • Linde Meyaard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse studies were performed at NextCure based on Institutional Animal Care and Use Committee standards according to the protocols of NextCure Animal (NCA) Study 164 (NCA#164 for Figure 3), NCA#122 (for Figure 4), NCA#209 (for Figure 5), NCA#217 (for Figure 6) and NCA#270 (for Supplementary Figure 3).

Human subjects: Peripheral Blood Mononuclear Cells (PBMCs) were isolated from blood of healthy donors in agreement with ethical committee of the University Medical Center Utrecht (UMCU) and after written informed consent from the subjects in accordance with the Declaration of Helsinki.Specimens of seven selected tumor types were included for analysis: head and neck squamous cell carcinoma (HNSC), glioblastoma (GBM), melanoma, non-small-cell lung carcinoma (NSCLC), high-grade serous carcinoma (HGSC), pancreatic ductal adenocarcinoma (PDAC), and stomach adenocarcinoma (STAD). Of each tumor type, in agreement with the ethical committee of the UMCU, formalin fixed, paraffin embedded (FFPE) material of 9-10 tumor specimens and five healthy specimens was collected from the tissue biobank (research protocol 17-786).

Copyright

© 2021, Ramos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,180
    views
  • 678
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. M Ines Pascoal Ramos
  2. Linjie Tian
  3. Emma J de Ruiter
  4. Chang Song
  5. Ana Paucarmayta
  6. Akashdip Singh
  7. Eline Elshof
  8. Saskia V Vijver
  9. Jahangheer Shaik
  10. Jason Bosiacki
  11. Zachary Cusumano
  12. Christina Jensen
  13. Nicholas Willumsen
  14. Morten A Karsdal
  15. Linda Liu
  16. Sol Langermann
  17. Stefan Willems
  18. Dallas Flies
  19. Linde Meyaard
(2021)
Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction
eLife 10:e62927.
https://doi.org/10.7554/eLife.62927

Share this article

https://doi.org/10.7554/eLife.62927

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.