The Arabidopsis active demethylase ROS1 cis-regulates defense genes by erasing DNA methylation at promoter-regulatory regions

Abstract

Active DNA demethylation has emerged as an important regulatory process of plant and mammalian immunity. However, very little is known about the mechanisms by which active demethylation controls transcriptional immune reprogramming and disease resistance. Here, we first show that the Arabidopsis active demethylase ROS1 promotes basal resistance towards Pseudomonas syringae by antagonizing RNA-directed DNA methylation (RdDM). Furthermore, we find that ROS1 facilitates the flagellin-triggered induction of the disease resistance gene RMG1 by limiting RdDM at the 3' boundary of a remnant RC/Helitron transposable element (TE) embedded in its promoter. We further identify flagellin-responsive ROS1 putative primary targets, and show that at a subset of promoters, ROS1 erases methylation at discrete regions exhibiting WRKY transcription factors (TFs) binding. In particular, we demonstrate that ROS1 removes methylation at the orphan immune receptor RLP43 promoter, to ensure DNA binding of WRKY TFs. Finally, we show that ROS1-directed demethylation of the RMG1 and RLP43 promoters is causal for both flagellin responsiveness of these genes and for basal resistance. Overall, these findings significantly advance our understanding of how active demethylases shape transcriptional immune reprogramming to enable antibacterial resistance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all main figures and for supplemental figures. Sequencing data have been deposited in SRA under the accession code SRP133028.

The following data sets were generated

Article and author information

Author details

  1. Thierry Halter

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingyu Wang

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Delase Amesefe

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Emmanuelle Lastrucci

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Magali Charvin

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Meenu Singla Rastogi

    Biology, IBENS-CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Lionel Navarro

    Biology, IBENS-CNRS, Paris, France
    For correspondence
    lionel.navarro@ens.psl.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1083-9478

Funding

H2020 European Research Council (Silencing & Immunity (281749))

  • Lionel Navarro

Agence Nationale de la Recherche (NEPRHON (ANR-18-CE20-0020))

  • Lionel Navarro

H2020 Marie Skłodowska-Curie Actions (EU Project 661715 - BASILA)

  • Thierry Halter

Fondation Pierre-Gilles de Gennes pour la recherche

  • Thierry Halter

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02PSL)

  • Lionel Navarro

Agence Nationale de la Recherche (ANR-10-LABX-54 MEMOLIFE)

  • Lionel Navarro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daniel Zilberman, John Innes Centre, United Kingdom

Version history

  1. Received: September 10, 2020
  2. Accepted: January 19, 2021
  3. Accepted Manuscript published: January 20, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2021, Halter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,003
    views
  • 730
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thierry Halter
  2. Jingyu Wang
  3. Delase Amesefe
  4. Emmanuelle Lastrucci
  5. Magali Charvin
  6. Meenu Singla Rastogi
  7. Lionel Navarro
(2021)
The Arabidopsis active demethylase ROS1 cis-regulates defense genes by erasing DNA methylation at promoter-regulatory regions
eLife 10:e62994.
https://doi.org/10.7554/eLife.62994

Share this article

https://doi.org/10.7554/eLife.62994

Further reading

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.