Control of feeding by Piezo-mediated gut mechanosensation in Drosophila

  1. Soohong Min
  2. Yangkyun Oh
  3. Pushpa Verma
  4. Samuel C Whitehead
  5. Nilay Yapici
  6. David Van Vactor
  7. Greg SB Suh
  8. Stephen Liberles  Is a corresponding author
  1. Harvard Medical School, United States
  2. Skirball Institute, NYU, United States
  3. Cornell University, United States

Abstract

Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns, and identify a key role for Drosophila Piezo in internal organ mechanosensation.

Data availability

All datapoints used are provided in Figures and in a Source Data File.

Article and author information

Author details

  1. Soohong Min

    Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Yangkyun Oh

    Molecular Neurobiology, Skirball Institute, NYU, New York, United States
    Competing interests
    No competing interests declared.
  3. Pushpa Verma

    Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Samuel C Whitehead

    Physics, Cornell University, Ithaca, NY, United States
    Competing interests
    No competing interests declared.
  5. Nilay Yapici

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  6. David Van Vactor

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  7. Greg SB Suh

    Molecular Neurobiology, Skirball Institute, NYU, New York, United States
    Competing interests
    No competing interests declared.
  8. Stephen Liberles

    Department of Cell Biology, Harvard Medical School, Boston, United States
    For correspondence
    Stephen_Liberles@hms.harvard.edu
    Competing interests
    Stephen Liberles, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2177-9741

Funding

American Heart Association (20POST35210914)

  • Soohong Min

National Institutes of Health (NS090994)

  • David Van Vactor

National Institutes of Health (RO1DK116294)

  • Greg SB Suh

National Institutes of Health (RO1DK106636)

  • Greg SB Suh

Samsung Science and Technology Foundation (SSTF-BA-1802-11)

  • Greg SB Suh

Howard Hughes Medical Institute

  • Stephen Liberles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Min et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,085
    views
  • 814
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Soohong Min
  2. Yangkyun Oh
  3. Pushpa Verma
  4. Samuel C Whitehead
  5. Nilay Yapici
  6. David Van Vactor
  7. Greg SB Suh
  8. Stephen Liberles
(2021)
Control of feeding by Piezo-mediated gut mechanosensation in Drosophila
eLife 10:e63049.
https://doi.org/10.7554/eLife.63049

Share this article

https://doi.org/10.7554/eLife.63049

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.