Abstract

Learning and decision making are interactive processes, yet cognitive modelling of error-driven learning and decision making have largely evolved separately. Recently, evidence accumulation models (EAMs) of decision making and reinforcement learning (RL) models of error-driven learning have been combined into joint RL-EAMs that can in principle address these interactions. However, we show that the most commonly used combination, based on the diffusion decision model (DDM) for binary choice, consistently fails to capture crucial aspects of response times observed during reinforcement learning. We propose a new RL-EAM based on an advantage racing diffusion (ARD) framework for choices among two or more options that not only addresses this problem but captures stimulus difficulty, speed-accuracy trade-off, and stimulus-response-mapping reversal effects. The RL-ARD avoids fundamental limitations imposed by the DDM on addressing effects of absolute values of choices, as well as extensions beyond binary choice, and provides a computationally tractable basis for wider applications.

Data availability

All data analysed in this study are available from https://osf.io/ygrve/

The following data sets were generated

Article and author information

Author details

  1. Steven Miletić

    Department of Psychology, University of Amsterdam, University of Amsterdam, Netherlands
    For correspondence
    s.miletic@uva.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7399-2926
  2. Russell J Boag

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Anne C Trutti

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Niek Stevenson

    Department of Psychology, University of Amsterdam, University of Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Birte U Forstmann

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    Birte U Forstmann, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1005-1675
  6. Andrew Heathcote

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (016.vici.185.052)

  • Birte U Forstmann

Australian Research Council (DP150100272)

  • Andrew Heathcote

Australian Research Council (DP160101891)

  • Andrew Heathcote

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained in all experiments prior to the experiment onset. The local ethics board of the University of Amsterdam, Department of Psychology approved the study, with reference numbers 2018-BC-9620 (experiment 1), 2019-BC-10672 (experiment 2), 2019-BC-10250 (experiment 3), and 2020-BC-12788 (experiment 4).

Copyright

© 2021, Miletić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,528
    views
  • 424
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steven Miletić
  2. Russell J Boag
  3. Anne C Trutti
  4. Niek Stevenson
  5. Birte U Forstmann
  6. Andrew Heathcote
(2021)
A new model of decision processing in instrumental learning tasks
eLife 10:e63055.
https://doi.org/10.7554/eLife.63055

Share this article

https://doi.org/10.7554/eLife.63055

Further reading

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.