Abstract

Learning and decision making are interactive processes, yet cognitive modelling of error-driven learning and decision making have largely evolved separately. Recently, evidence accumulation models (EAMs) of decision making and reinforcement learning (RL) models of error-driven learning have been combined into joint RL-EAMs that can in principle address these interactions. However, we show that the most commonly used combination, based on the diffusion decision model (DDM) for binary choice, consistently fails to capture crucial aspects of response times observed during reinforcement learning. We propose a new RL-EAM based on an advantage racing diffusion (ARD) framework for choices among two or more options that not only addresses this problem but captures stimulus difficulty, speed-accuracy trade-off, and stimulus-response-mapping reversal effects. The RL-ARD avoids fundamental limitations imposed by the DDM on addressing effects of absolute values of choices, as well as extensions beyond binary choice, and provides a computationally tractable basis for wider applications.

Data availability

All data analysed in this study are available from https://osf.io/ygrve/

The following data sets were generated

Article and author information

Author details

  1. Steven Miletić

    Department of Psychology, University of Amsterdam, University of Amsterdam, Netherlands
    For correspondence
    s.miletic@uva.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7399-2926
  2. Russell J Boag

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Anne C Trutti

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Niek Stevenson

    Department of Psychology, University of Amsterdam, University of Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Birte U Forstmann

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    Birte U Forstmann, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1005-1675
  6. Andrew Heathcote

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (016.vici.185.052)

  • Birte U Forstmann

Australian Research Council (DP150100272)

  • Andrew Heathcote

Australian Research Council (DP160101891)

  • Andrew Heathcote

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained in all experiments prior to the experiment onset. The local ethics board of the University of Amsterdam, Department of Psychology approved the study, with reference numbers 2018-BC-9620 (experiment 1), 2019-BC-10672 (experiment 2), 2019-BC-10250 (experiment 3), and 2020-BC-12788 (experiment 4).

Copyright

© 2021, Miletić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,665
    views
  • 436
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steven Miletić
  2. Russell J Boag
  3. Anne C Trutti
  4. Niek Stevenson
  5. Birte U Forstmann
  6. Andrew Heathcote
(2021)
A new model of decision processing in instrumental learning tasks
eLife 10:e63055.
https://doi.org/10.7554/eLife.63055

Share this article

https://doi.org/10.7554/eLife.63055

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.