Abstract

Learning and decision making are interactive processes, yet cognitive modelling of error-driven learning and decision making have largely evolved separately. Recently, evidence accumulation models (EAMs) of decision making and reinforcement learning (RL) models of error-driven learning have been combined into joint RL-EAMs that can in principle address these interactions. However, we show that the most commonly used combination, based on the diffusion decision model (DDM) for binary choice, consistently fails to capture crucial aspects of response times observed during reinforcement learning. We propose a new RL-EAM based on an advantage racing diffusion (ARD) framework for choices among two or more options that not only addresses this problem but captures stimulus difficulty, speed-accuracy trade-off, and stimulus-response-mapping reversal effects. The RL-ARD avoids fundamental limitations imposed by the DDM on addressing effects of absolute values of choices, as well as extensions beyond binary choice, and provides a computationally tractable basis for wider applications.

Data availability

All data analysed in this study are available from https://osf.io/ygrve/

The following data sets were generated

Article and author information

Author details

  1. Steven Miletić

    Department of Psychology, University of Amsterdam, University of Amsterdam, Netherlands
    For correspondence
    s.miletic@uva.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7399-2926
  2. Russell J Boag

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Anne C Trutti

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Niek Stevenson

    Department of Psychology, University of Amsterdam, University of Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Birte U Forstmann

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    Birte U Forstmann, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1005-1675
  6. Andrew Heathcote

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (016.vici.185.052)

  • Birte U Forstmann

Australian Research Council (DP150100272)

  • Andrew Heathcote

Australian Research Council (DP160101891)

  • Andrew Heathcote

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained in all experiments prior to the experiment onset. The local ethics board of the University of Amsterdam, Department of Psychology approved the study, with reference numbers 2018-BC-9620 (experiment 1), 2019-BC-10672 (experiment 2), 2019-BC-10250 (experiment 3), and 2020-BC-12788 (experiment 4).

Copyright

© 2021, Miletić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,376
    views
  • 411
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Steven Miletić
  2. Russell J Boag
  3. Anne C Trutti
  4. Niek Stevenson
  5. Birte U Forstmann
  6. Andrew Heathcote
(2021)
A new model of decision processing in instrumental learning tasks
eLife 10:e63055.
https://doi.org/10.7554/eLife.63055

Share this article

https://doi.org/10.7554/eLife.63055

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.