Investigation of Drosophila fruitless neurons that express Dpr/DIP cell adhesion molecules
Abstract
Drosophila reproductive behaviors are directed by fruitless neurons. A reanalysis of genomic studies shows that genes encoding dpr and DIP Immunoglobulin superfamily (IgSF) members are expressed in fru P1 neurons. We find that each fru P1 and dpr/DIP (fru P1 ∩ dpr/DIP) overlapping expression pattern is similar in both sexes, but there are dimorphisms in neuronal morphology and cell number. Behavioral studies of fru P1 ∩ dpr/DIP perturbation genotypes indicates that the mushroom body functions together with the lateral protocerebral complex to direct courtship behavior. A single-cell RNA-seq analysis of fru P1 neurons shows that many DIPs have high expression in a small set of neurons, whereas the dprs are often expressed in a larger set of neurons at intermediate levels, with a myriad of dpr/DIP expression combinations. Functionally, we find that perturbations of sex hierarchy genes and of DIP-ε change the sex-specific morphologies of fru P1 ∩ DIP-α neurons.
Data availability
All raw data are provided in the supplementary materials. The sequencing data has been deposited in GEO under accession number GSE162098
-
Investigation of Drosophila fruitless neurons that express Dpr/DIP cell adhesion moleculesNCBI Gene Expression Omnibus, GSE162098.
Article and author information
Author details
Funding
National Institutes of Health (R01 grant number R01GM073039)
- Savannah G Brovero
- Julia C Fortier
- Hongru Hu
- Pamela C Lovejoy
- Nicole R Newell
- Colleen M Palmateer
- Ruei-Ying Tzeng
- Michelle N Arbeitman
National Institutes of Health (R03 grant number R03NS090184)
- Ruei-Ying Tzeng
National Institutes of Health (R01 grant number R01GM073039)
- Michelle N Arbeitman
Florida State University (R01 grant number Biomedical Sciences)
- Hongru Hu
- Pamela C Lovejoy
- Nicole R Newell
- Colleen M Palmateer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Brovero et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,927
- views
-
- 307
- downloads
-
- 24
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.