Investigation of Drosophila fruitless neurons that express Dpr/DIP cell adhesion molecules

  1. Savannah G Brovero
  2. Julia C Fortier
  3. Hongru Hu
  4. Pamela C Lovejoy
  5. Nicole R Newell
  6. Colleen M Palmateer
  7. Ruei-Ying Tzeng
  8. Pei-Tseng Lee
  9. Kai Zinn
  10. Michelle N Arbeitman  Is a corresponding author
  1. Florida State University, United States
  2. Baylor College of Medicine, United States
  3. California Institute of Technology, United States

Abstract

Drosophila reproductive behaviors are directed by fruitless neurons. A reanalysis of genomic studies shows that genes encoding dpr and DIP Immunoglobulin superfamily (IgSF) members are expressed in fru P1 neurons. We find that each fru P1 and dpr/DIP (fru P1dpr/DIP) overlapping expression pattern is similar in both sexes, but there are dimorphisms in neuronal morphology and cell number. Behavioral studies of fru P1dpr/DIP perturbation genotypes indicates that the mushroom body functions together with the lateral protocerebral complex to direct courtship behavior. A single-cell RNA-seq analysis of fru P1 neurons shows that many DIPs have high expression in a small set of neurons, whereas the dprs are often expressed in a larger set of neurons at intermediate levels, with a myriad of dpr/DIP expression combinations. Functionally, we find that perturbations of sex hierarchy genes and of DIP-ε change the sex-specific morphologies of fru P1DIP-α neurons.

Data availability

All raw data are provided in the supplementary materials. The sequencing data has been deposited in GEO under accession number GSE162098

The following data sets were generated

Article and author information

Author details

  1. Savannah G Brovero

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia C Fortier

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hongru Hu

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pamela C Lovejoy

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicole R Newell

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Colleen M Palmateer

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ruei-Ying Tzeng

    Biomedical Sciences, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Pei-Tseng Lee

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Zinn

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6706-5605
  10. Michelle N Arbeitman

    Biomedical Sciences, Florida State University, Tallahassee, United States
    For correspondence
    michelle.arbeitman@med.fsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2437-4352

Funding

National Institutes of Health (R01 grant number R01GM073039)

  • Savannah G Brovero
  • Julia C Fortier
  • Hongru Hu
  • Pamela C Lovejoy
  • Nicole R Newell
  • Colleen M Palmateer
  • Ruei-Ying Tzeng
  • Michelle N Arbeitman

National Institutes of Health (R03 grant number R03NS090184)

  • Ruei-Ying Tzeng

National Institutes of Health (R01 grant number R01GM073039)

  • Michelle N Arbeitman

Florida State University (R01 grant number Biomedical Sciences)

  • Hongru Hu
  • Pamela C Lovejoy
  • Nicole R Newell
  • Colleen M Palmateer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, University of California, Berkeley, United States

Version history

  1. Received: September 17, 2020
  2. Accepted: February 22, 2021
  3. Accepted Manuscript published: February 22, 2021 (version 1)
  4. Version of Record published: March 18, 2021 (version 2)

Copyright

© 2021, Brovero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,615
    views
  • 292
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Savannah G Brovero
  2. Julia C Fortier
  3. Hongru Hu
  4. Pamela C Lovejoy
  5. Nicole R Newell
  6. Colleen M Palmateer
  7. Ruei-Ying Tzeng
  8. Pei-Tseng Lee
  9. Kai Zinn
  10. Michelle N Arbeitman
(2021)
Investigation of Drosophila fruitless neurons that express Dpr/DIP cell adhesion molecules
eLife 10:e63101.
https://doi.org/10.7554/eLife.63101

Share this article

https://doi.org/10.7554/eLife.63101

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.