Abstract

Measures of lung function are heritable, and thus, we sought to utilise genetics to propose drug repurposing candidates that could improve respiratory outcomes. Lung function measures were found to be genetically correlated with seven druggable biochemical traits, with further evidence of a causal relationship between increased fasting glucose and diminished lung function. Moreover, we developed polygenic scores for lung function specifically within pathways with known drug targets and investigated their relationship with pulmonary phenotypes and gene expression in independent cohorts to prioritise individuals who may benefit from particular drug repurposing opportunities. A transcriptome-wide association study (TWAS) of lung function was then performed which identified several drug-gene interactions with predicted lung function increasing modes of action. Drugs that regulate blood glucose were uncovered through both the polygenic scoring and TWAS methodologies. In summary, we provided genetic justification for a number of novel drug repurposing opportunities that could improve lung function.

Data availability

All data are publicly available from the references described in the manuscript. Code related to this study can be found at the following link: https://github.com/Williamreay/Lung_function_drug_repurposing_manuscript

The following previously published data sets were used

Article and author information

Author details

  1. William R Reay

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    William R Reay, has filed a patent related to the use of the pharmagenic enrichment score methodology in complex disorders. This competing interest only applies to that section of the manuscript. WIPO Patent Application WO/2020/237314..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7689-2453
  2. Sahar I El Shair

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  3. Michael P Geaghan

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  4. Carlos Riveros

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  5. Elizabeth G Holliday

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  6. Mark A McEvoy

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  7. Stephen Hancock

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  8. Roseanne Peel

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  9. Rodney J Scott

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  10. John R Attia

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  11. Murray J Cairns

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    For correspondence
    murray.cairns@newcastle.edu.au
    Competing interests
    Murray J Cairns, has filed a patent related to the use of the pharmagenic enrichment score methodology in complex disorders. This competing interest only applies to that section of the manuscript. WIPO Patent Application WO/2020/237314..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2490-2538

Funding

National Health and Medical Research Council (1147644)

  • Murray J Cairns

National Health and Medical Research Council (1121474)

  • Murray J Cairns

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The use of the Hunter Community Cohort data was approved by the University of Newcastle Human Ethics Research Committee (HREC, reference: H-820-0504a). All other information related to ethical approval for the individual GWAS studies we utilised in this study are detailed in their respective publications as referenced throughout the text

Copyright

© 2021, Reay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,529
    views
  • 185
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William R Reay
  2. Sahar I El Shair
  3. Michael P Geaghan
  4. Carlos Riveros
  5. Elizabeth G Holliday
  6. Mark A McEvoy
  7. Stephen Hancock
  8. Roseanne Peel
  9. Rodney J Scott
  10. John R Attia
  11. Murray J Cairns
(2021)
Genetic association and causal inference converge on hyperglycaemia as a modifiable factor to improve lung function
eLife 10:e63115.
https://doi.org/10.7554/eLife.63115

Share this article

https://doi.org/10.7554/eLife.63115

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Martina Rudgalvyte, Zehan Hu ... Dominique A Glauser
    Research Article

    Thermal nociception in Caenorhabditis elegans is regulated by the Ca²+/calmodulin-dependent protein kinase CMK-1, but its downstream effectors have remained unclear. Here, we combined in vitro kinase assays with mass-spectrometry-based phosphoproteomics to identify hundreds of CMK-1 substrates, including the calcineurin A subunit TAX-6, phosphorylated within its conserved regulatory domain. Genetic and pharmacological analyses reveal multiple antagonistic interactions between CMK-1 and calcineurin signaling in modulating both naive thermal responsiveness and adaptation to repeated noxious stimuli. Cell-specific manipulations indicate that CMK-1 acts in AFD and ASER thermo-sensory neurons, while TAX-6 functions in FLP thermo-sensory neurons and downstream interneurons. Since CMK-1 and TAX-6 act in distinct cell types, the phosphorylation observed in vitro might not directly underlie the behavioral phenotype. Instead, the opposing effects seem to arise from their distributed roles within the sensory circuit. Overall, our study provides (1) a resource of candidate CMK-1 targets for further dissecting CaM kinase signaling and (2) evidence of a previously unrecognized, circuit-level antagonism between CMK-1 and calcineurin pathways. These findings highlight a complex interplay of signaling modules that modulate thermal nociception and adaptation, offering new insights into potentially conserved mechanisms that shape nociceptive plasticity and pain (de)sensitization in more complex nervous systems.

    1. Genetics and Genomics
    Mengjia Li, Hengchao Zhang ... Lixiang Chen
    Research Article

    Isocitrate dehydrogenase 1 (IDH1) is the key enzyme that can modulate cellular metabolism, epigenetic modification, and redox homeostasis. Gain-of-function mutations and decreased expression of IDH1 have been demonstrated to be associated with pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, the function and mechanism of IDH1 in human erythropoiesis still remains unclear. Here, utilizing the human erythropoiesis system, we present an evidence of IDH1-mediated chromatin state reprogramming besides its well-characterized metabolism effects. We found that knockdown IDH1 induced chromatin reorganization and subsequently led to abnormalities biological events in erythroid precursors, which could not be rescued by addition of reactive oxygen species (ROS) scavengers or supplementation of α-ketoglutarate (α-KG).We further revealed that knockdown IDH1 induces genome-wide changes in distribution and intensity of multiple histone marks, among which H3K79me3 was identified as a critical factor in chromatin state reprogramming. Integrated analysis of ChIP-seq, ATAC-seq, and RNA-seq recognized that SIRT1 was the key gene affected by IDH1 deficiency. Thus, our current work provided novel insights for further clarifying fundamental biological function of IDH1 which has substantial implications for an in-depth understanding of pathogenesis of diseases with IDH1 dysfunction and accordingly development of therapeutic strategies.