1. Genetics and Genomics
Download icon

Genetic association and causal inference converge on hyperglycaemia as a modifiable factor to improve lung function

Research Article
  • Cited 0
  • Views 229
  • Annotations
Cite this article as: eLife 2021;10:e63115 doi: 10.7554/eLife.63115

Abstract

Measures of lung function are heritable, and thus, we sought to utilise genetics to propose drug repurposing candidates that could improve respiratory outcomes. Lung function measures were found to be genetically correlated with seven druggable biochemical traits, with further evidence of a causal relationship between increased fasting glucose and diminished lung function. Moreover, we developed polygenic scores for lung function specifically within pathways with known drug targets and investigated their relationship with pulmonary phenotypes and gene expression in independent cohorts to prioritise individuals who may benefit from particular drug repurposing opportunities. A transcriptome-wide association study (TWAS) of lung function was then performed which identified several drug-gene interactions with predicted lung function increasing modes of action. Drugs that regulate blood glucose were uncovered through both the polygenic scoring and TWAS methodologies. In summary, we provided genetic justification for a number of novel drug repurposing opportunities that could improve lung function.

Article and author information

Author details

  1. William R Reay

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    William R Reay, has filed a patent related to the use of the pharmagenic enrichment score methodology in complex disorders. This competing interest only applies to that section of the manuscript. WIPO Patent Application WO/2020/237314..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7689-2453
  2. Sahar I El Shair

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  3. Michael P Geaghan

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  4. Carlos Riveros

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  5. Elizabeth G Holliday

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  6. Mark A McEvoy

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  7. Stephen Hancock

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  8. Roseanne Peel

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  9. Rodney J Scott

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  10. John R Attia

    School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
    Competing interests
    No competing interests declared.
  11. Murray J Cairns

    School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
    For correspondence
    murray.cairns@newcastle.edu.au
    Competing interests
    Murray J Cairns, has filed a patent related to the use of the pharmagenic enrichment score methodology in complex disorders. This competing interest only applies to that section of the manuscript. WIPO Patent Application WO/2020/237314..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2490-2538

Funding

National Health and Medical Research Council (1147644)

  • Murray J Cairns

National Health and Medical Research Council (1121474)

  • Murray J Cairns

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The use of the Hunter Community Cohort data was approved by the University of Newcastle Human Ethics Research Committee (HREC, reference: H-820-0504a). All other information related to ethical approval for the individual GWAS studies we utilised in this study are detailed in their respective publications as referenced throughout the text

Reviewing Editor

  1. Chris P Ponting, University of Edinburgh, United Kingdom

Publication history

  1. Received: September 15, 2020
  2. Accepted: March 11, 2021
  3. Accepted Manuscript published: March 15, 2021 (version 1)

Copyright

© 2021, Reay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 229
    Page views
  • 32
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Elliott Swanson et al.
    Tools and Resources

    Single-cell measurements of cellular characteristics have been instrumental in understanding the heterogeneous pathways that drive differentiation, cellular responses to signals, and human disease. Recent advances have allowed paired capture of protein abundance and transcriptomic state, but a lack of epigenetic information in these assays has left a missing link to gene regulation. Using the heterogeneous mixture of cells in human peripheral blood as a test case, we developed a novel scATAC-seq workflow that increases signal-to-noise and allows paired measurement of cell surface markers and chromatin accessibility: integrated cellular indexing of chromatin landscape and epitopes, called ICICLE-seq. We extended this approach using a droplet-based multiomics platform to develop a trimodal assay that simultaneously measures transcriptomics (scRNA-seq), epitopes, and chromatin accessibility (scATAC-seq) from thousands of single cells, which we term TEA-seq. Together, these multimodal single-cell assays provide a novel toolkit to identify type-specific gene regulation and expression grounded in phenotypically defined cell types.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Paloma Diaz-Maroto et al.
    Research Article Updated

    The study of South American camelids and their domestication is a highly debated topic in zooarchaeology. Identifying the domestic species (alpaca and llama) in archaeological sites based solely on morphological data is challenging due to their similarity with respect to their wild ancestors. Using genetic methods also presents challenges due to the hybridization history of the domestic species, which are thought to have extensively hybridized following the Spanish conquest of South America that resulted in camelids slaughtered en masse. In this study, we generated mitochondrial genomes for 61 ancient South American camelids dated between 3,500 and 2,400 years before the present (Early Formative period) from two archaeological sites in Northern Chile (Tulán-54 and Tulán-85), as well as 66 modern camelid mitogenomes and 815 modern mitochondrial control region sequences from across South America. In addition, we performed osteometric analyses to differentiate big and small body size camelids. A comparative analysis of these data suggests that a substantial proportion of the ancient vicuña genetic variation has been lost since the Early Formative period, as it is not present in modern specimens. Moreover, we propose a domestication hypothesis that includes an ancient guanaco population that no longer exists. Finally, we find evidence that interbreeding practices were widespread during the domestication process by the early camelid herders in the Atacama during the Early Formative period and predating the Spanish conquest.