1. Evolutionary Biology
  2. Genetics and Genomics
Download icon

Evolutionary dynamics of transposable elements in bdelloid rotifers

  1. Reuben W Nowell  Is a corresponding author
  2. Christopher G Wilson
  3. Pedro Almeida
  4. Philipp H Schiffer
  5. Diego Fontaneto
  6. Lutz Becks
  7. Fernando Rodriguez
  8. Irina R Arkhipova
  9. Timothy G Barraclough  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University College London, United Kingdom
  3. University of Cologne, Germany
  4. National Research Council of Italy, Italy
  5. University of Konstanz, Germany
  6. Marine Biological Laboratory, United States
Research Article
  • Cited 0
  • Views 388
  • Annotations
Cite this article as: eLife 2021;10:e63194 doi: 10.7554/eLife.63194

Abstract

Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data from eight species of bdelloid rotifers, a class of invertebrates in which males are thus far unknown. Contrary to expectations, we find a variety of active TEs in bdelloid genomes, at an overall frequency within the range seen in sexual species. We find no evidence that TEs are spread by cryptic recombination or restrained by unusual DNA repair mechanisms. Instead, we find that that TE content evolves relatively slowly in bdelloids and that gene families involved in RNAi-mediated TE suppression have undergone significant expansion, which might mitigate the deleterious effects of active TEs and compensate for the consequences of long-term asexuality.

Article and author information

Author details

  1. Reuben W Nowell

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    For correspondence
    reubennowell@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7546-6495
  2. Christopher G Wilson

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Pedro Almeida

    Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Philipp H Schiffer

    Institute of Zoology, University of Cologne, Köln, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6776-0934
  5. Diego Fontaneto

    Water Research Institute, National Research Council of Italy, Verbania Pallanza, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Lutz Becks

    University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Fernando Rodriguez

    Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Irina R Arkhipova

    Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4805-1339
  9. Timothy G Barraclough

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    For correspondence
    tim.barraclough@zoo.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Natural Environment Research Council (NE/M01651X/1)

  • Timothy G Barraclough

Natural Environment Research Council (NE/S010866/2)

  • Christopher G Wilson
  • Timothy G Barraclough

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Publication history

  1. Received: September 17, 2020
  2. Accepted: February 4, 2021
  3. Accepted Manuscript published: February 5, 2021 (version 1)
  4. Accepted Manuscript updated: February 11, 2021 (version 2)

Copyright

© 2021, Nowell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 388
    Page views
  • 94
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Lea Stauber et al.
    Research Article

    Invasive microbial species constitute a major threat to biodiversity, agricultural production and human health. Invasions are often dominated by one or a small number of genotypes, yet the underlying factors driving invasions are poorly understood. The chestnut blight fungus Cryphonectria parasitica first decimated the North American chestnut, and a more recent outbreak threatens European chestnut stands. To unravel the chestnut blight invasion of southeastern Europe, we sequenced 230 genomes of predominantly European strains. Genotypes outside of the invasion zone showed high levels of diversity with evidence for frequent and ongoing recombination. The invasive lineage emerged from the highly diverse European genotype pool rather than a secondary introduction from Asia or North America. The expansion across southeastern Europe was mostly clonal and is dominated by a single mating type, suggesting a fitness advantage of asexual reproduction. Our findings show how an intermediary, highly diverse bridgehead population gave rise to an invasive, largely clonally expanding pathogen.

    1. Developmental Biology
    2. Evolutionary Biology
    Koh Onimaru et al.
    Research Article Updated

    How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls.