Extra-cellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility

  1. Monika E Dolega
  2. Sylvain Monnier
  3. Benjamin Brunel
  4. Jean-François Joanny
  5. Pierre Recho  Is a corresponding author
  6. Giovanni Cappello  Is a corresponding author
  1. Université Grenoble Alpes, France
  2. Université Claude Bernard Lyon 1, CNRS, France
  3. Collège de France, France
  4. Institut Curie, France

Abstract

Imposed deformations play an important role in morphogenesis and tissue homeostasis, both in normal and pathological conditions. To perceive mechanical perturbations of different types and magnitudes, tissues need appropriate detectors, with a compliance that matches the perturbation amplitude. By comparing results of selective osmotic compressions of CT26 cells within multicellular aggregates and global aggregate compressions, we show that global compressions have a strong impact on the aggregates growth and internal cell motility, while selective compressions of same magnitude have almost no effect. Both compressions alter the volume of individual cells in the same way over a shor-timescale, but, by draining the water out of the extracellular matrix, the global one imposes a residual compressive mechanical stress on the cells over a long-timescale, while the selective one does not. We conclude that the extracellular matrix is as a sensor that mechanically regulates cell proliferation and migration in a 3D environment.

Data availability

Data concerning figures 2, 3, 4, 5 and appendix B are available at the following URL: https://osf.io/n6ra2/?view_only=059da2ebcd064b75bd12c0c2008b9a6a

The following data sets were generated

Article and author information

Author details

  1. Monika E Dolega

    Physics, Université Grenoble Alpes, St. Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Sylvain Monnier

    Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, F-69622 VILLEURBANNE, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Brunel

    Physics, Université Grenoble Alpes, St. Martin d'Hères, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2858-5074
  4. Jean-François Joanny

    PSL Research University, Collège de France, 75005 Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre Recho

    Department of Physico-Chemistry of Living Matter, Institut Curie, Paris, France
    For correspondence
    pierre.recho@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
  6. Giovanni Cappello

    Physics, Université Grenoble Alpes, St. Martin d'Hères, France
    For correspondence
    giovanni.cappello@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5012-367X

Funding

Agence Nationale de la Recherche (ANR-13-BSV5-0008-01)

  • Giovanni Cappello

Centre National de la Recherche Scientifique (MechanoBio 2018)

  • Giovanni Cappello

Ligue Contre le Cancer

  • Sylvain Monnier

Institut National de la Santé et de la Recherche Médicale (PC201407)

  • Giovanni Cappello

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Dolega et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,659
    views
  • 725
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monika E Dolega
  2. Sylvain Monnier
  3. Benjamin Brunel
  4. Jean-François Joanny
  5. Pierre Recho
  6. Giovanni Cappello
(2021)
Extra-cellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility
eLife 10:e63258.
https://doi.org/10.7554/eLife.63258

Share this article

https://doi.org/10.7554/eLife.63258

Further reading

    1. Physics of Living Systems
    Xiaowen Chen, Maciej Winiarksi ... Aleksandra M Walczak
    Research Article

    In social behavior research, the focus often remains on animal dyads, limiting the understanding of complex interactions. Recent trends favor naturalistic setups, offering unique insights into intricate social behaviors. Social behavior stems from chance, individual preferences, and group dynamics, necessitating high-resolution quantitative measurements and statistical modeling. This study leverages the Eco-HAB system, an automated experimental setup that employs radiofrequency identification tracking to observe naturally formed mouse cohorts in a controlled yet naturalistic setting, and uses statistical inference models to decipher rules governing the collective dynamics of groups of 10–15 individuals. Applying maximum entropy models on the coarse-grained co-localization patterns of mice unveils social rules in mouse hordes, quantifying sociability through pairwise interactions within groups, the impact of individual versus social preferences, and the effects of considering interaction structures among three animals instead of two. Reproducing co-localization patterns of individual mice reveals stability over time, with the statistics of the inferred interaction strength capturing social structure. By separating interactions from individual preferences, the study demonstrates that altering neuronal plasticity in the prelimbic cortex – the brain structure crucial for sociability – does not eliminate signatures of social interactions, but makes the transmission of social information between mice more challenging. The study demonstrates how the joint probability distribution of the mice positions can be used to quantify sociability.

    1. Physics of Living Systems
    Ning Liu, Wenan Qiang ... Huanyu Qiao
    Research Article

    Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young’s modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.