Dissecting the DNA binding landscape and gene regulatory network of p63 and p53

  1. Konstantin Riege
  2. Helene Kretzmer
  3. Arne Sahm
  4. Simon S McDade
  5. Steve Hoffmann
  6. Martin Fischer  Is a corresponding author
  1. Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Germany
  2. Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Germany
  3. Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, United Kingdom
8 figures, 1 table and 4 additional files

Figures

Meta-analysis of p63-dependent gene regulation.

(A) Distribution of the number of genes found in each of the p63 Expression Score groups. Because p63 Expression Score group ‘14’ and ‘−12’ contained only two genes they were included in group ‘13’ and ‘−11’, respectively, for further analyses. (B) 16 datasets on p63-dependent gene expression from 11 studies. EE – exogenous p63 expression; sh KD – shRNA-mediated knockdown; si KD – siRNA-mediated knockdown; KO - sgRNA-mediated knockout (C) A heatmap displaying the regulation of 15 genes with positive and 15 genes with negative p63 Expression Scores. GAPDH and GAPDHS represent negative controls.

Gene sets enriched among genes commonly regulated by p63.

Enrichment of (A, B, C, E) MSigDB gene sets or (D) genes up- and down-regulated across squamous cell cancers (SCC) (Cancer Genome Atlas Research Network et al., 2018) among genes ranked by the p63 Expression Score.

Transcription factors in the p63 GRN.

(A) Significant (adj.p-value≤0.05) enrichment of TF binding at genes with a p63 Expression Score ≥8 (green) or ≤ −8 (red) as identified by Enrichr (Kuleshov et al., 2016). (B) Enrichment of MSigDB gene sets among genes ranked by the p63 Expression Score. Scatter plots displays the log2(fold-change) of previously collected high confidence DREAM target genes (Fischer et al., 2016a) (C) across the 16 p63-dependent gene expression profiling datasets and (D) MCF10A cells treated with DMSO or Nutlin in addition to shControl and shp63 (Karsli Uzunbas et al., 2019). CDKN1A levels serve as control. The black line indicates the median.

p63 and p53 regulate largely distinct target gene sets.

(A) The p63 Expression Score compared to the previously published p53 Expression Score that was generated using the same meta-analysis approach (Fischer et al., 2016a) for all 16,198 genes for which both scores were available. (B) The scatter plot displays the log2(fold-change) of previously collected high confidence direct p53 target genes (Fischer, 2017) across the 16 p63-dependent gene expression profiling datasets. The black line indicates the median. The data indicates a large degree of independence of p53 targets from p63-dependent expression.

Figure 5 with 4 supplements
The p63 and p53 DNA-binding landscape.

(A and B) The number of p63 and p53 binding peaks sorted by the number of datasets that commonly identified/support the peak. (C) The number of p53 and p63 peaks identified in the 28 p53 and 20 p63 ChIP-seq datasets, respectively. (D) The relative number of ‘known’ p53 and p63 motifs found by HOMER v4.10 (Heinz et al., 2010) under p53 and p63 peaks, respectively, with increasing dataset support. (E) Schematic of ‘p53’, ‘p63’ and ‘p53+p63’ peak selection for further analyses. (F) De novo motif search results from HOMER v4.10 for the ‘p53+p63’, ‘p53’, and ‘p63’ peak sets. The first round of motif search identified the ‘primary’ motif in each peak set. Using an iterative approach, all peaks that contained the ‘primary’ motif were removed and the de novo motif search was repeated. This iterative approach was followed until no more p53/p63-like motif was identified.

Figure 5—figure supplement 1
Correlation between p53 and p63 binding frequency and motif consensus.

(A and B) Correlation between dataset support for p53 and p63 binding. (C to F) Correlation between HOMER motif score for primary and secondary ‘p53+p63’ motifs and dataset support for (C and D) p53 binding or (E and F) p63 binding.

Figure 5—figure supplement 2
Correlation between p53 and p63 binding frequency and motif consensus.

Correlation between HOMER motif score for primary, secondary, and tertiary (A to C) ‘p53’ motifs or (D to F) ‘p63’ motifs and dataset support for (A to C) p53 binding or (D to F) p63 binding.

Figure 5—figure supplement 3
Top motifs co-enriched with primary ‘p53+p63’, ‘p53’, and ‘p63’ motifs at the respective DNA sites.
Figure 5—figure supplement 4
TFs with significantly similar binding repertoirs.

Top 20 TFs with ChIP-seq peak sets similar to (A) the common p53+p63 sites, (B) the unique p53 sites, and (C) the unique p63 sites (Figure 5E) as identified using CistromeDB toolkit.

Of note, some TP53 ChIP-seq datasets are wrongly labeled ‘T’ in the database.

The DNA-binding landscape of p53.

DNA sites occupied by p53 in at least five datasets were searched iterative with the motifs identified by our iterative de novo search (Figure 5F). We searched first for the primary ‘p53+p63’ motif and among all remaining sites for the primary ‘p53’ motif. All other ‘p53+p63’ and ‘p53’ motifs were searched subsequently.

Figure 7 with 1 supplement
The DNA-binding landscape of p63.

DNA sites occupied by p63 in at least five datasets were searched iterative with the motifs identified by our iterative de novo search (Figure 5F). We searched first for the primary ‘p53+p63’ motif and among all remaining sites for the primary ‘p63’ motif. All other ‘p53+p63’ and ‘p63’ motifs were searched subsequently (Supplementary file 3).

Figure 7—figure supplement 1
Complement to Table 1.

Genes identified as significantly up- or down-regulated in at least the half of all datasets (|p63 Expression Score|| ≥ 8) that are linked to p63-binding sites supported by at least half of all datasets (≥10) through binding within 5 kb from their TSS or through double-elite enhancer:gene associations (Fishilevich et al., 2017). Using these thresholds we identified 138 and 42 high-probability candidates as directly up- and down-regulated by p63, respectively. Gene names marked in red are also up- or down-regulated across SCCs (Cancer Genome Atlas Research Network et al., 2018).

Figure 8 with 1 supplement
p63/SCC 28-gene set correlates with poorer survival in HNSC.

Kaplan-Meier plots of TCGA HNSC patient survival data. (A) Patients were subdivided in four equally sized subgroups based on expression levels of the 28-gene set. The results suggest a poorer survival of patients with an up-regulated expression of the set genes. (B) To corroborate this finding patients of the subgroups low-med, med-high, and high from (A) were joined to form a new high group. Boxplot in bins of 10 of TP63 FPKM expression values in TCGA HNCS patient sample data compared to (C) FPKM values of a meta-gene comprising the 28-gene set and (D) ssGSEA scores of the 28-gene set. X-axis is right-censored at 100 to better visualize the effect. The full graph is displayed in Figure 8—figure supplement 1.

Figure 8—figure supplement 1
Extension of Figure 8C and D.

Boxplot in bins of 10 of TP63 FPKM expression values in TCGA HNCS patient sample data compared to (A) FPKM values of a meta-gene comprising the 28-gene set and (B) ssGSEA scores of the 28-gene set. Complementary to Figure 8C and D.

Tables

Table 1
High-probability direct p63 target genes.

Genes identified as significantly up- or down-regulated in at least the half of all datasets (|p63 Expression Score| ≥ 8) that are linked to p63-binding sites supported by at least half of all datasets (≥10) through binding within 5 kb from their TSS or through double-elite enhancer-gene associations (Fishilevich et al., 2017). Using these thresholds we identified 138 and 42 high-probability candidates as directly up- and down-regulated by p63, respectively. Gene names marked in bold are also up- or down-regulated across SCCs (Cancer Genome Atlas Research Network et al., 2018).

Gene symbolp63 Expression Scorep63 binding within
5 kb from TSS
p63 binding linked
through enhancer
Gene symbolp63 Expression Scorep63 binding within
5 kb from TSS
p63 binding linked
through enhancer
DUSP614yesyesFSCN18yesyes
RAB3814yesyesGINS38yesno
GSDME13yesyesGM2A8yesyes
LAD113yesyesHMGA28yesyes
S100A213yesyesHSPA4L8yesyes
TMEM4013yesyesJAG18yesyes
FGFBP112yesyesKCTD128yesno
HAS312yesnoKIAA09308yesyes
NECTIN112yesyesKIF148noyes
TCOF112yesyesKIRREL18noyes
DUSP711yesyesLIG18yesyes
IL1B11noyesLPAR38yesyes
MREG11noyesLRRFIP28noyes
PA2G411yesnoMALT18noyes
RGS2011yesnoMAST48noyes
SDC111noyesMCM38noyes
SFN11yesyesMMP148yesyes
STK17A11yesyesMMRN28yesno
VSNL111yesyesNOM18yesno
ARHGAP2510yesyesNRCAM8yesyes
CDCA410yesyesNRG18noyes
DUSP1110yesnoOAS38yesyes
FAT210yesnoPPFIBP18yesyes
FERMT110yesyesPROCR8yesno
IL4R10yesyesQSOX28yesyes
INPP110yesyesRAD51C8yesyes
IRF610noyesRASSF68noyes
ITGA610noyesRFX78yesno
KIZ10yesnoSH3PXD2A8noyes
MAPKBP110noyesSLC1A58yesyes
MYO1010yesyesSLC2A98yesyes
MYO1910yesyesSLC37A28yesno
ORC110noyesSMAD58yesno
PAK110yesnoSPATS28noyes
PTHLH10yesyesSSRP18noyes
SMTN10yesnoTGFB18yesyes
WDFY210yesnoTMEM2378yesno
XDH10yesyesTOMM348yesno
ARHGDIB9yesyesTRIM78yesyes
AURKB9yesnoTRIP138yesno
BTBD119yesnoTSPAN58yesno
C6orf1069yesnoTSR18noyes
CARD109yesyesTYMS8yesyes
CHAF1A9noyesUCK28yesyes
CSTA9yesnoUTP48noyes
CYP27B19yesnoYAP18yesno
FEZ19yesyesYES18yesyes
GNA159yesnoZFP36L28noyes
GPX29yesnoAPH1B-8noyes
GSTP19yesnoBIRC3-8yesyes
HRAS9yesyesC9orf3-8yesyes
IFI169yesyesCHST3-8noyes
KREMEN19yesyesCPQ-8noyes
LDLR9yesnoDUSP8-8yesno
MAPK69yesyesEPCAM-8noyes
MYO5A9noyesERBB2-8noyes
NCAPH29yesnoFBN1-8noyes
NDE19yesyesITFG1-8yesno
NDST19yesyesLLGL2-8yesyes
NIPAL49yesyesNCSTN-8noyes
PPIF9noyesOPN3-8noyes
PPP4R49yesnoPBX1-8yesyes
PTTG19yesyesPDXK-8noyes
RAPGEF59yesyesPLAC8-8yesyes
RNASE79yesyesS100A4-8noyes
RRP129noyesSPOCK1-8noyes
SERPINB139yesnoTNS3-8noyes
SNCA9noyesARL6IP5-9noyes
STX69yesnoCOBL-9noyes
AK48noyesCUEDC1-9yesyes
ARHGAP238yesyesGSN-9yesno
ASCC38yesyesPDGFC-9yesyes
BRCA18yesnoPGPEP1-9noyes
BTBD108yesyesPLXNB2-9yesyes
CCNK8yesnoPXDN-9noyes
CCT48yesnoRALGPS1-9yesyes
CD448yesyesROR1-9yesno
CDC42SE18yesnoSLC16A5-9yesyes
CDCA78yesnoTM4SF1-9yesyes
COL17A18yesnoALDH3B1−10yesyes
CRKL8yesyesCYP1B1−10noyes
DRAP18yesyesHHAT−10yesyes
EHD48noyesMEGF8−10noyes
ERCC6L8noyesPTGES−10yesno
ESRP18noyesPTTG1IP−10noyes
FABP58yesnoRPS27L−10yesyes
FANCI8yesyesSECTM1−10yesyes
FLOT28yesnoSLC22A5−10yesno
FOSL18yesyesTNFSF15−10yesyes
FRMD4B8yesnoSRD5A3−11yesno

Additional files

Supplementary file 1

Detailed information on publicly available p63-dependent gene expression profiling and p63 ChIP-seq datasets that were integrated in this study.

https://cdn.elifesciences.org/articles/63266/elife-63266-supp1-v2.xlsx
Supplementary file 2

Meta-analysis from 16 p63-dependent gene expression information datasets (listed in Suppelemtary File 1) to generate the p63 Expression Score for 19,156 human genes.

https://cdn.elifesciences.org/articles/63266/elife-63266-supp2-v2.xlsx
Supplementary file 3

p63- and p53-binding sites identified in at least 5 out of 20 and 28 ChIP-seq datasets, respectively.

Binding sites are listed with their ChIP-seq dataset support and highest scoring p63 response elements (p63REs) or p53REs. Genes associated with p63-binding sites through proximal TSS binding or enhancers are listed.

https://cdn.elifesciences.org/articles/63266/elife-63266-supp3-v2.xlsx
Transparent reporting form
https://cdn.elifesciences.org/articles/63266/elife-63266-transrepform-v2.docx

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantin Riege
  2. Helene Kretzmer
  3. Arne Sahm
  4. Simon S McDade
  5. Steve Hoffmann
  6. Martin Fischer
(2020)
Dissecting the DNA binding landscape and gene regulatory network of p63 and p53
eLife 9:e63266.
https://doi.org/10.7554/eLife.63266