Dissecting the DNA binding landscape and gene regulatory network of p63 and p53

  1. Konstantin Riege
  2. Helene Kretzmer
  3. Arne Sahm
  4. Simon S McDade
  5. Steve Hoffmann
  6. Martin Fischer  Is a corresponding author
  1. Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Germany
  2. Max Planck Institute for Molecular Genetics, Germany
  3. Queen's University Belfast, United Kingdom

Abstract

The transcription factor p53 is the best-known tumor suppressor, but its sibling p63 is a master regulator of epidermis development and a key oncogenic driver in squamous cell carcinomas (SCC). Despite multiple gene expression studies becoming available, the limited overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene regulatory network. Particularly, analyses of p63 response elements differed substantially among the studies. To address this intricate data situation, we provide an integrated resource that enables assessing the p63-dependent regulation of any human gene of interest. We use a novel iterative de novo motif search approach in conjunction with extensive ChIP-seq data to achieve a precise global distinction between p53 and p63 binding sites, recognition motifs, and potential co-factors. We integrate these data with enhancer:gene associations to predict p63 target genes and identify those that are commonly de-regulated in SCC representing candidates for prognosis and therapeutic interventions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Konstantin Riege

    Computational Biology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Helene Kretzmer

    Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Arne Sahm

    Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7330-1790
  4. Simon S McDade

    Queen's University Belfast, Belfast, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Steve Hoffmann

    Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Fischer

    Computational Biology, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
    For correspondence
    Martin.Fischer@leibniz-fli.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3429-1876

Funding

Deutsche Forschungsgemeinschaft (FI 1993/2-1)

  • Martin Fischer

Bundesministerium für Bildung und Forschung (031L016D)

  • Steve Hoffmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ashish Lal, National Institutes of Health, United States

Version history

  1. Received: September 21, 2020
  2. Accepted: December 1, 2020
  3. Accepted Manuscript published: December 2, 2020 (version 1)
  4. Version of Record published: December 14, 2020 (version 2)

Copyright

© 2020, Riege et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,403
    views
  • 372
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantin Riege
  2. Helene Kretzmer
  3. Arne Sahm
  4. Simon S McDade
  5. Steve Hoffmann
  6. Martin Fischer
(2020)
Dissecting the DNA binding landscape and gene regulatory network of p63 and p53
eLife 9:e63266.
https://doi.org/10.7554/eLife.63266

Share this article

https://doi.org/10.7554/eLife.63266

Further reading

    1. Chromosomes and Gene Expression
    Miin S Lin, Se-Young Jo ... Vineet Bafna
    Research Article

    Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Mathew Thayer, Michael B Heskett ... Phillip A Yates
    Research Article

    ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.