The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals

  1. Margaret E Torrence
  2. Michael R MacArthur
  3. Aaron M Hosios
  4. Alexander J Valvezan
  5. John M Asara
  6. James R Mitchell
  7. Brendan D Manning  Is a corresponding author
  1. Harvard T H Chan School of Public Health, United States
  2. Rutgers Robert Wood Johnson Medical School, United States
  3. Beth Israel Deaconess Medical Center, United States
  4. Swiss Federal Institute of Technology (ETH) Zurich, United States

Abstract

The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast (MEF) and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided as supplemental tables for Figures 1, 2, and 3. RNA-Seq data have been deposited in GEO under accession code GSE158605.

The following data sets were generated

Article and author information

Author details

  1. Margaret E Torrence

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  2. Michael R MacArthur

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  3. Aaron M Hosios

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  4. Alexander J Valvezan

    Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
    Competing interests
    No competing interests declared.
  5. John M Asara

    Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  6. James R Mitchell

    Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, United States
    Competing interests
    No competing interests declared.
  7. Brendan D Manning

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    For correspondence
    bmanning@hsph.harvard.edu
    Competing interests
    Brendan D Manning, Brendan Manning is a scientific advisory board member and stockholder of Navitor Pharmaceuticals and LAM Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3895-5956

Funding

National Institutes of Health (R35-CA197459)

  • Brendan D Manning

National Institutes of Health (P01-CA120964)

  • Brendan D Manning

U.S. Department of Defense (W81XWH-18-1- 0659)

  • Brendan D Manning

National Institutes of Health (T32-ES016645)

  • Margaret E Torrence

National Institutes of Health (F31-CA228332)

  • Margaret E Torrence

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted under strict adherence to recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were approved by the Harvard Institutional Animal Care and Use Committee (#IS00000780).

Copyright

© 2021, Torrence et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 17,911
    views
  • 2,098
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margaret E Torrence
  2. Michael R MacArthur
  3. Aaron M Hosios
  4. Alexander J Valvezan
  5. John M Asara
  6. James R Mitchell
  7. Brendan D Manning
(2021)
The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals
eLife 10:e63326.
https://doi.org/10.7554/eLife.63326

Share this article

https://doi.org/10.7554/eLife.63326

Further reading

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

    1. Cancer Biology
    2. Evolutionary Biology
    Lingjie Zhang, Tong Deng ... Chung-I Wu
    Research Article

    Tumorigenesis, like most complex genetic traits, is driven by the joint actions of many mutations. At the nucleotide level, such mutations are cancer-driving nucleotides (CDNs). The full sets of CDNs are necessary, and perhaps even sufficient, for the understanding and treatment of each cancer patient. Currently, only a small fraction of CDNs is known as most mutations accrued in tumors are not drivers. We now develop the theory of CDNs on the basis that cancer evolution is massively repeated in millions of individuals. Hence, any advantageous mutation should recur frequently and, conversely, any mutation that does not is either a passenger or deleterious mutation. In the TCGA cancer database (sample size n=300–1000), point mutations may recur in i out of n patients. This study explores a wide range of mutation characteristics to determine the limit of recurrences (i*) driven solely by neutral evolution. Since no neutral mutation can reach i*=3, all mutations recurring at i≥3 are CDNs. The theory shows the feasibility of identifying almost all CDNs if n increases to 100,000 for each cancer type. At present, only <10% of CDNs have been identified. When the full sets of CDNs are identified, the evolutionary mechanism of tumorigenesis in each case can be known and, importantly, gene targeted therapy will be far more effective in treatment and robust against drug resistance.