Development of antibody-dependent cell cytotoxicity function in HIV-1 antibodies

  1. Laura E Doepker
  2. Sonja Danon
  3. Elias Harkins
  4. Duncan K Ralph
  5. Zak Yaffe
  6. Meghan E Garrett
  7. Amrit Dhar
  8. Cassia Wagner
  9. Megan M Stumpf
  10. Dana Arenz
  11. James A Williams
  12. Walter Jaoko
  13. Kishor Mandaliya
  14. Kelly K Lee
  15. Frederick A Matsen IV
  16. Julie M Overbaugh  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. University of Washington, United States
  3. University of Nairobi, Kenya
  4. Coast Provincial General Hospital, Kenya

Abstract

A prerequisite for the design of an HIV vaccine that elicits protective antibodies is understanding the developmental pathways that result in desirable antibody features. The development of antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) is particularly relevant because such antibodies have been associated with HIV protection in humans. We reconstructed the developmental pathways of six human HIV-specific ADCC antibodies using longitudinal antibody sequencing data. Most of the inferred naïve antibodies did not mediate detectable ADCC. Gain of antigen binding and ADCC function typically required mutations in complementarity determining regions of one or both chains. Enhancement of ADCC potency often required additional mutations in framework regions. Antigen binding affinity and ADCC activity were correlated, but affinity alone was not sufficient to predict ADCC potency. Thus, elicitation of broadly active ADCC antibodies may require mutations that enable high affinity antigen recognition along with mutations that optimize factors contributing to functional ADCC activity.

Data availability

Sequencing data have been deposited in BioProject SRA under the accession codes PRJNA639297 and PRJNA685289. Data generated and analyzed in this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 4, 5, 7, and 8.

The following data sets were generated

Article and author information

Author details

  1. Laura E Doepker

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4514-5003
  2. Sonja Danon

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5399-7081
  3. Elias Harkins

    Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Duncan K Ralph

    Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Zak Yaffe

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  6. Meghan E Garrett

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  7. Amrit Dhar

    Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  8. Cassia Wagner

    Medical Scientist Training Program, Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9934-7578
  9. Megan M Stumpf

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8085-3094
  10. Dana Arenz

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  11. James A Williams

    Medicinal Chemistry, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  12. Walter Jaoko

    Medicinal Microbiology, University of Nairobi, Nairobi, Kenya
    Competing interests
    No competing interests declared.
  13. Kishor Mandaliya

    Women's Health Project, Coast Provincial General Hospital, Mombasa, Kenya
    Competing interests
    No competing interests declared.
  14. Kelly K Lee

    Medicinal Chemistry, Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  15. Frederick A Matsen IV

    Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0607-6025
  16. Julie M Overbaugh

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    joverbau@fredhutch.org
    Competing interests
    Julie M Overbaugh, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0239-9444

Funding

National Institutes of Health (R37 AI038518)

  • Julie M Overbaugh

National Institutes of Health (R01 HD103571)

  • Julie M Overbaugh

National Institutes of Health (R01 GM113246)

  • Frederick A Matsen IV

National Institutes of Health (R01 AI146028)

  • Frederick A Matsen IV

National Institutes of Health (T32 AI07140)

  • Laura E Doepker

National Institutes of Health (T32 AI083203)

  • Zak Yaffe

National Institutes of Health (P30 AI027757)

  • Duncan K Ralph

Howard Hughes Medical Institute (Faculty Scholar grant)

  • Frederick A Matsen IV

Simons Foundation (Faculty Scholar grant)

  • Frederick A Matsen IV

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Approval to conduct this study was provided by the ethical review committees of the University of Nairobi Institutional Review Board, the Fred Hutchinson Cancer Research Center Institutional Review Board (protocol 7776), and the University of Washington Institutional Review Board; Clinical Trial Management System Number RG1000880. Study participants provided written informed consent prior to enrollment.

Copyright

© 2021, Doepker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,416
    views
  • 167
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura E Doepker
  2. Sonja Danon
  3. Elias Harkins
  4. Duncan K Ralph
  5. Zak Yaffe
  6. Meghan E Garrett
  7. Amrit Dhar
  8. Cassia Wagner
  9. Megan M Stumpf
  10. Dana Arenz
  11. James A Williams
  12. Walter Jaoko
  13. Kishor Mandaliya
  14. Kelly K Lee
  15. Frederick A Matsen IV
  16. Julie M Overbaugh
(2021)
Development of antibody-dependent cell cytotoxicity function in HIV-1 antibodies
eLife 10:e63444.
https://doi.org/10.7554/eLife.63444

Share this article

https://doi.org/10.7554/eLife.63444

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.