LAP2alpha maintains a mobile and low assembly state of A-type lamins in the nuclear interior

Abstract

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2a). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2a. Here we show that loss of LAP2a actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2a-independent manner, binding of LAP2a to lamins A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2a is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2G-H, Figure 4A-B and Figure 6A

Article and author information

Author details

  1. Nana Naetar

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    For correspondence
    nana.naetar@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
  2. Konstantina Georgiou

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Knapp

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2463-5775
  4. Irena Bronshtein

    Physics Department and Nanotechnology Institute, Bar Ilan University, Ramt Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabeth Zier

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Petra Fichtinger

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Dechat

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuval Garini

    The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Roland Foisner

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    For correspondence
    roland.foisner@meduniwien.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4734-4647

Funding

Austrian Science Fund (P26492-B20,P29713-B28,P32512-B)

  • Roland Foisner

Austrian Academy of Sciences (APART 11657)

  • Nana Naetar

Israel Science Foundation (ISF grant 1219/17)

  • Irena Bronshtein
  • Yuval Garini

European Cooperation in Science and Technology (COST-STSM-BM1002-8698,COST-STSM-BM1002-11436)

  • Thomas Dechat

European Molecular Biology Organization (ASTF 316-2011)

  • Thomas Dechat

S Grosskopf Grant

  • Irena Bronshtein
  • Yuval Garini

Austrian Academy of Sciences (ÖAW DOC 25725)

  • Konstantina Georgiou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Naetar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,860
    views
  • 365
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nana Naetar
  2. Konstantina Georgiou
  3. Christian Knapp
  4. Irena Bronshtein
  5. Elisabeth Zier
  6. Petra Fichtinger
  7. Thomas Dechat
  8. Yuval Garini
  9. Roland Foisner
(2021)
LAP2alpha maintains a mobile and low assembly state of A-type lamins in the nuclear interior
eLife 10:e63476.
https://doi.org/10.7554/eLife.63476

Share this article

https://doi.org/10.7554/eLife.63476

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.