1. Cell Biology
Download icon

LAP2alpha maintains a mobile and low assembly state of A-type lamins in the nuclear interior

  1. Nana Naetar  Is a corresponding author
  2. Konstantina Georgiou
  3. Christian Knapp
  4. Irena Bronshtein
  5. Elisabeth Zier
  6. Petra Fichtinger
  7. Thomas Dechat
  8. Yuval Garini
  9. Roland Foisner  Is a corresponding author
  1. Medical University Vienna, Austria
  2. Bar Ilan University, Israel
Research Article
  • Cited 0
  • Views 622
  • Annotations
Cite this article as: eLife 2021;10:e63476 doi: 10.7554/eLife.63476

Abstract

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2a). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2a. Here we show that loss of LAP2a actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2a-independent manner, binding of LAP2a to lamins A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2a is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2G-H, Figure 4A-B and Figure 6A

Article and author information

Author details

  1. Nana Naetar

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    For correspondence
    nana.naetar@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
  2. Konstantina Georgiou

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Knapp

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2463-5775
  4. Irena Bronshtein

    Physics Department and Nanotechnology Institute, Bar Ilan University, Ramt Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabeth Zier

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Petra Fichtinger

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Dechat

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuval Garini

    The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Roland Foisner

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    For correspondence
    roland.foisner@meduniwien.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4734-4647

Funding

Austrian Science Fund (P26492-B20,P29713-B28,P32512-B)

  • Roland Foisner

Austrian Academy of Sciences (APART 11657)

  • Nana Naetar

Israel Science Foundation (ISF grant 1219/17)

  • Irena Bronshtein
  • Yuval Garini

European Cooperation in Science and Technology (COST-STSM-BM1002-8698,COST-STSM-BM1002-11436)

  • Thomas Dechat

European Molecular Biology Organization (ASTF 316-2011)

  • Thomas Dechat

S Grosskopf Grant

  • Irena Bronshtein
  • Yuval Garini

Austrian Academy of Sciences (ÖAW DOC 25725)

  • Konstantina Georgiou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan C King, Yale School of Medicine, United States

Publication history

  1. Received: September 28, 2020
  2. Accepted: February 18, 2021
  3. Accepted Manuscript published: February 19, 2021 (version 1)
  4. Version of Record published: March 8, 2021 (version 2)

Copyright

© 2021, Naetar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 622
    Page views
  • 107
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Lara Katharina Krüger et al.
    Research Article Updated

    Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in Schizosaccharomyces pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.

    1. Cell Biology
    2. Medicine
    Srinu Tumpara et al.
    Short Report Updated

    Expression levels of CX3CR1 (C-X3-C motif chemokine receptor 1) on immune cells have significant importance in maintaining tissue homeostasis under physiological and pathological conditions. The factors implicated in the regulation of CX3CR1 and its specific ligand CX3CL1 (fractalkine) expression remain largely unknown. Recent studies provide evidence that host’s misfolded proteins occurring in the forms of polymers or amyloid fibrils can regulate CX3CR1 expression. Herein, a novel example demonstrates that polymers of human ZZ alpha-1 antitrypsin (Z-AAT) protein, resulting from its conformational misfolding due to the Z (Glu342Lys) mutation in SERPINA1 gene, strongly lower CX3CR1 mRNA expression in human peripheral blood mononuclear cells (PBMCs). This parallels with increase of intracellular levels of CX3CR1 and Z-AAT proteins. Presented data indicate the involvement of the CX3CR1 pathway in the Z-AAT-related disorders and further support the role of misfolded proteins in CX3CR1 regulation.