1. Cell Biology
Download icon

LAP2alpha maintains a mobile and low assembly state of A-type lamins in the nuclear interior

  1. Nana Naetar  Is a corresponding author
  2. Konstantina Georgiou
  3. Christian Knapp
  4. Irena Bronshtein
  5. Elisabeth Zier
  6. Petra Fichtinger
  7. Thomas Dechat
  8. Yuval Garini
  9. Roland Foisner  Is a corresponding author
  1. Medical University Vienna, Austria
  2. Bar Ilan University, Israel
Research Article
  • Cited 0
  • Views 207
  • Annotations
Cite this article as: eLife 2021;10:e63476 doi: 10.7554/eLife.63476

Abstract

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2a). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2a. Here we show that loss of LAP2a actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2a-independent manner, binding of LAP2a to lamins A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2a is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.

Article and author information

Author details

  1. Nana Naetar

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    For correspondence
    nana.naetar@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
  2. Konstantina Georgiou

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Knapp

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2463-5775
  4. Irena Bronshtein

    Physics Department and Nanotechnology Institute, Bar Ilan University, Ramt Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Elisabeth Zier

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Petra Fichtinger

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Dechat

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuval Garini

    The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Roland Foisner

    Max Perutz Labs, Medical University Vienna, Vienna, Austria
    For correspondence
    roland.foisner@meduniwien.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4734-4647

Funding

Austrian Science Fund (P26492-B20,P29713-B28,P32512-B)

  • Roland Foisner

Austrian Academy of Sciences (APART 11657)

  • Nana Naetar

Israel Science Foundation (ISF grant 1219/17)

  • Irena Bronshtein
  • Yuval Garini

European Cooperation in Science and Technology (COST-STSM-BM1002-8698,COST-STSM-BM1002-11436)

  • Thomas Dechat

European Molecular Biology Organization (ASTF 316-2011)

  • Thomas Dechat

S Grosskopf Grant

  • Irena Bronshtein
  • Yuval Garini

Austrian Academy of Sciences (ÖAW DOC 25725)

  • Konstantina Georgiou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan C King, Yale School of Medicine, United States

Publication history

  1. Received: September 28, 2020
  2. Accepted: February 18, 2021
  3. Accepted Manuscript published: February 19, 2021 (version 1)

Copyright

© 2021, Naetar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 207
    Page views
  • 60
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Luca Minati et al.
    Tools and Resources Updated

    A vast portion of the mammalian genome is transcribed as long non-coding RNAs (lncRNAs) acting in the cytoplasm with largely unknown functions. Surprisingly, lncRNAs have been shown to interact with ribosomes, encode peptides, or act as ribosome sponges. These functions still remain mostly undetected and understudied owing to the lack of efficient tools for genome-wide simultaneous identification of ribosome-associated and peptide-producing lncRNAs. Here, we present AHA-mediated RIBOsome isolation (AHARIBO), a method for the detection of lncRNAs either untranslated, but associated with ribosomes, or encoding small peptides. Using AHARIBO in mouse embryonic stem cells during neuronal differentiation, we isolated ribosome-protected RNA fragments, translated RNAs, and corresponding de novo synthesized peptides. Besides identifying mRNAs under active translation and associated ribosomes, we found and distinguished lncRNAs acting as ribosome sponges or encoding micropeptides, laying the ground for a better functional understanding of hundreds of lncRNAs.

    1. Cell Biology
    2. Computational and Systems Biology
    Taraneh Zarin et al.
    Research Advance Updated

    In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al., 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.