McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation

  1. Bence Hajdusits
  2. Marcin J Suskiewicz
  3. Nikolas Hundt
  4. Anton Meinhart
  5. Robert Kurzbauer
  6. Julia Leodolter
  7. Philipp Kukura  Is a corresponding author
  8. Tim Clausen  Is a corresponding author
  1. Research Institute of Molecular Pathology, Austria
  2. University of Oxford, United Kingdom
  3. Ludwig Maximilian University of Munich, Germany

Abstract

In Gram-positive bacteria, the McsB protein arginine kinase is central to protein quality control, labelling aberrant molecules for degradation by the ClpCP protease. Despite its importance for stress response and pathogenicity, it is still elusive how the bacterial degradation labelling is regulated. Here, we delineate the mechanism how McsB targets aberrant proteins during stress conditions. Structural data reveal a self-compartmentalized kinase, in which the active sites are sequestered in a molecular cage. The 'closed' octamer interconverts with other oligomers in a phosphorylation-dependent manner and, contrary to these 'open' forms, preferentially labels unfolded proteins. In vivo data show that heat-shock triggers accumulation of higher-order oligomers, of which the octameric McsB is essential for surviving stress situations. The interconversion of open and closed oligomers represents a distinct regulatory mechanism of a degradation labeler, allowing the McsB kinase to adapt its potentially dangerous enzyme function to the needs of the bacterial cell.

Data availability

Structure factor amplitudes and Coordinate files have been deposited in the Protein Data Bank under the accession number 6TV6.

Article and author information

Author details

  1. Bence Hajdusits

    Structural Biology, Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Marcin J Suskiewicz

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nikolas Hundt

    Department of Cellular Physiology, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8217-671X
  4. Anton Meinhart

    Structural Biology, Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Kurzbauer

    Structural Biology, Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Leodolter

    Structural Biology, Research Institute of Molecular Pathology, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Philipp Kukura

    Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    philipp.kukura@chem.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. Tim Clausen

    Structural Biology, Research Institute of Molecular Pathology, Vienna, Austria
    For correspondence
    tim.clausen@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1582-6924

Funding

H2020 European Research Council (AdG 694978)

  • Tim Clausen

FFG (Headquarter Grant 852936)

  • Tim Clausen

H2020 European Research Council (CoG 819593)

  • Philipp Kukura

Deutsche Forschungsgemeinschaft (Return Grant HU 2462/3-1)

  • Nikolas Hundt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William I Weis, Stanford University School of Medicine, United States

Version history

  1. Preprint posted: September 8, 2020 (view preprint)
  2. Received: September 27, 2020
  3. Accepted: July 29, 2021
  4. Accepted Manuscript published: July 30, 2021 (version 1)
  5. Version of Record published: August 17, 2021 (version 2)

Copyright

© 2021, Hajdusits et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,661
    views
  • 246
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bence Hajdusits
  2. Marcin J Suskiewicz
  3. Nikolas Hundt
  4. Anton Meinhart
  5. Robert Kurzbauer
  6. Julia Leodolter
  7. Philipp Kukura
  8. Tim Clausen
(2021)
McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation
eLife 10:e63505.
https://doi.org/10.7554/eLife.63505

Share this article

https://doi.org/10.7554/eLife.63505

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.