Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization

Abstract

Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional corepressor SKI, which is a negative regulator of TGF-b signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-β responses, in both knockin cells expressing an SGS mutation, and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-b-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.

Data availability

Sequencing data have been uploaded to the European Genome-phenome Archive (EGA), accession number EGAS00001004908. Diffraction data have been deposited in PDB under the accession code 6ZVQ. All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 4, 5, 6, 7, Figure 1 Supplement 1, Figure 2 Supplement 1, Figure 7 Supplement 2.

The following data sets were generated

Article and author information

Author details

  1. Ilaria Gori

    Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Roger George

    The Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew G Purkiss

    Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Strohbuecker

    Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rebecca A Randall

    Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Roksana Ogrodowicz

    The Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Virginie Carmignac

    GAD team, Université Bourgogne Franche-Comté, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Laurence Faivre

    GAD team, Université Bourgogne Franche-Comté, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Dhira Joshi

    Peptide Chemistry Facility, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8660-2528
  10. Svend Kjaer

    Structural Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Caroline S Hill

    Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    caroline.hill@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8632-0480

Funding

Francis Crick Institute (FC10095)

  • Ilaria Gori
  • Roger George
  • Andrew G Purkiss
  • Stephanie Strohbuecker
  • Rebecca A Randall
  • Roksana Ogrodowicz
  • Dhira Joshi
  • Svend Kjaer
  • Caroline S Hill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Dermal fibroblasts from healthy subjects were kindly provided by David Abraham (UCL-Medical School Royal Free Campus) under the ethics of the Health Research Authority, NRES Committee London - Hampstead, Research Ethics Committee (REC) reference, 6398. L32V and ΔS94-97 SKI dermal fibroblasts were obtained from Laurence Faivre and Virginie Carmignac (Université de Bourgogne UMR1231 GAD, Dijon, France) under the ethics of the GAD collection, number DC2011-1332 (Carmignac et al., 2012).

Copyright

© 2021, Gori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,358
    views
  • 268
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilaria Gori
  2. Roger George
  3. Andrew G Purkiss
  4. Stephanie Strohbuecker
  5. Rebecca A Randall
  6. Roksana Ogrodowicz
  7. Virginie Carmignac
  8. Laurence Faivre
  9. Dhira Joshi
  10. Svend Kjaer
  11. Caroline S Hill
(2021)
Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization
eLife 10:e63545.
https://doi.org/10.7554/eLife.63545

Share this article

https://doi.org/10.7554/eLife.63545

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.