Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease

  1. Menghan Liu
  2. Joseph C Devlin
  3. Jiyuan Hu
  4. Angelina Volkova
  5. Thomas W Battaglia
  6. Melody Ho
  7. John R Asplin
  8. Allyson Byrd
  9. P'ng Loke
  10. Huilin Li
  11. Kelly V Ruggles
  12. Aristotelis Tsirigos
  13. Martin J Blaser  Is a corresponding author
  14. Lama Nazzal  Is a corresponding author
  1. NYU Langone health, United States
  2. NYU Langone Health, United States
  3. Litholink Corporation, United States
  4. Genetech Inc, United States
  5. Rutgers University, United States

Abstract

Over-accumulation of oxalate in humans may lead to nephrolithiasis and nephrocalcinosis. Humans lack endogenous oxalate degradation pathways (ODP), but intestinal microbes can degrade oxalate using multiple ODPs and protect against its absorption. The exact oxalate-degrading taxa in the human microbiota and their ODP have not been described. We leverage multi-omics data (>3000 samples from >1000 subjects) to show that the human microbiota primarily uses the type II ODP, rather than type I. Further, among the diverse ODP-encoding microbes, an oxalate autotroph, Oxalobacter formigenes, dominates this function transcriptionally. Patients with Inflammatory Bowel Disease (IBD) frequently suffer from disrupted oxalate homeostasis and calcium oxalate nephrolithiasis. We show that the enteric oxalate level is elevated in IBD patients, with highest levels in Crohn's disease patients with both ileal and colonic involvement consistent with known nephrolithiasis risk. We show that the microbiota ODP expression is reduced in IBD patients, which may contribute to the disrupted oxalate homeostasis. The specific changes in ODP expression by several important taxa suggest that they play distinct roles in IBD-induced nephrolithiasis risk. Lastly, we colonize mice that are maintained in the gnotobiotic facility with O. formigenes, using either a laboratory isolate or an isolate we cultured from human stools, and observed a significant reduction in host fecal and urine oxalate levels, supporting our in silico prediction of the importance of the microbiome, particularly O. formigenes in host oxalate homeostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-5.

The following previously published data sets were used

Article and author information

Author details

  1. Menghan Liu

    Sackler Institute of Graduate Biomedical Sciences, NYU Langone health, New York, United States
    Competing interests
    No competing interests declared.
  2. Joseph C Devlin

    Sackler Institute of Graduate Biomedical Sciences, NYU Langone health, New York, United States
    Competing interests
    No competing interests declared.
  3. Jiyuan Hu

    Department of Public Health, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
  4. Angelina Volkova

    Sackler Institute of Graduate Biomedical Sciences, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
  5. Thomas W Battaglia

    Department of Medicine, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
  6. Melody Ho

    Department of Medicine, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
  7. John R Asplin

    Litholink Corporation, Chicago, United States
    Competing interests
    John R Asplin, is an employee of Litholink.
  8. Allyson Byrd

    Department of Cancer Immunology, Genetech Inc, South San Francisco, United States
    Competing interests
    Allyson Byrd, is an employee of Genentech.
  9. P'ng Loke

    Department of Microbiology and Immunology, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6211-3292
  10. Huilin Li

    Department of Public Health, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
  11. Kelly V Ruggles

    Department of Medicine, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0152-0863
  12. Aristotelis Tsirigos

    Applied Bioinformatics Laboratories, NYU Langone Health, New York, United States
    Competing interests
    No competing interests declared.
  13. Martin J Blaser

    Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States
    For correspondence
    martin.blaser@cabm.rutgers.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2447-2443
  14. Lama Nazzal

    Department of Medicine, NYU Langone Health, New York, United States
    For correspondence
    Lama.Nazzal@nyulangone.org
    Competing interests
    No competing interests declared.

Funding

National Institute of Allergy and Infectious Diseases (U01AI22285)

  • Martin J Blaser

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK110014)

  • Huilin Li

Rare Kidney Stone Consortium (U54 DK083908)

  • Lama Nazzal

The C & D and Zlinkoff Funds

  • Martin J Blaser

Oxalosis and Hyperoxaluria Foundation-American Society of Nephrology (career development grant)

  • Lama Nazzal

TransAtlantic Partnership of the Fondation LeDucq

  • Martin J Blaser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Turnbaugh, University of California, San Francisco, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#IA16-00822) of the New York University Langone Medical Center.

Version history

  1. Received: October 1, 2020
  2. Accepted: March 23, 2021
  3. Accepted Manuscript published: March 26, 2021 (version 1)
  4. Version of Record published: April 22, 2021 (version 2)

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,882
    Page views
  • 345
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Menghan Liu
  2. Joseph C Devlin
  3. Jiyuan Hu
  4. Angelina Volkova
  5. Thomas W Battaglia
  6. Melody Ho
  7. John R Asplin
  8. Allyson Byrd
  9. P'ng Loke
  10. Huilin Li
  11. Kelly V Ruggles
  12. Aristotelis Tsirigos
  13. Martin J Blaser
  14. Lama Nazzal
(2021)
Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease
eLife 10:e63642.
https://doi.org/10.7554/eLife.63642

Share this article

https://doi.org/10.7554/eLife.63642

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.