Abstract

The Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Our findings highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as alternate allosteric hotspot targets for potential therapeutic development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5.

Article and author information

Author details

  1. Palur V Raghuvamsi

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0897-6935
  2. Nikhil Kumar Tulsian

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Firdaus Samsudin

    Bioinformatics Institute, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinlei Qian

    Life Sciences Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Kiren Purushotorman

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Gu Yue

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Mary M Kozma

    Life Sciences Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Wong Yee Hwa

    School of Biological Sciences, National Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Julien Lescar

    School of Biological Sciences, National Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter J Bond

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    For correspondence
    peterjb@bii.a-star.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Anthony MacAry

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    For correspondence
    micpam@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  12. Ganesh Srinivasan Anand

    Biological Sciences, National University of Singapore, Singapore, Singapore
    For correspondence
    gsa5089@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8995-3067

Funding

Ministry of Education - Singapore (Research Fellowship)

  • Ganesh Srinivasan Anand

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Raghuvamsi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,599
    views
  • 1,201
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Palur V Raghuvamsi
  2. Nikhil Kumar Tulsian
  3. Firdaus Samsudin
  4. Xinlei Qian
  5. Kiren Purushotorman
  6. Gu Yue
  7. Mary M Kozma
  8. Wong Yee Hwa
  9. Julien Lescar
  10. Peter J Bond
  11. Paul Anthony MacAry
  12. Ganesh Srinivasan Anand
(2021)
SARS-CoV-2 S protein:ACE2 interaction reveals novel allosteric targets
eLife 10:e63646.
https://doi.org/10.7554/eLife.63646

Share this article

https://doi.org/10.7554/eLife.63646

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.