Abstract

The Spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface ACE2 receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the pre-fusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral-host membrane fusion. Our findings highlight protease docking sites flanking the S1/S2 cleavage site, fusion peptide and heptad repeat 1 (HR1) as alternate allosteric hotspot targets for potential therapeutic development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5.

Article and author information

Author details

  1. Palur V Raghuvamsi

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0897-6935
  2. Nikhil Kumar Tulsian

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Firdaus Samsudin

    Bioinformatics Institute, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Xinlei Qian

    Life Sciences Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Kiren Purushotorman

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Gu Yue

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Mary M Kozma

    Life Sciences Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Wong Yee Hwa

    School of Biological Sciences, National Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Julien Lescar

    School of Biological Sciences, National Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter J Bond

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    For correspondence
    peterjb@bii.a-star.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Anthony MacAry

    Microbiology and Immunology, National University of Singapore, Singapore, Singapore
    For correspondence
    micpam@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  12. Ganesh Srinivasan Anand

    Biological Sciences, National University of Singapore, Singapore, Singapore
    For correspondence
    gsa5089@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8995-3067

Funding

Ministry of Education - Singapore (Research Fellowship)

  • Ganesh Srinivasan Anand

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Raghuvamsi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,687
    views
  • 1,210
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Palur V Raghuvamsi
  2. Nikhil Kumar Tulsian
  3. Firdaus Samsudin
  4. Xinlei Qian
  5. Kiren Purushotorman
  6. Gu Yue
  7. Mary M Kozma
  8. Wong Yee Hwa
  9. Julien Lescar
  10. Peter J Bond
  11. Paul Anthony MacAry
  12. Ganesh Srinivasan Anand
(2021)
SARS-CoV-2 S protein:ACE2 interaction reveals novel allosteric targets
eLife 10:e63646.
https://doi.org/10.7554/eLife.63646

Share this article

https://doi.org/10.7554/eLife.63646

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.