Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates

  1. Rylan Shearn
  2. Allison E Wright
  3. Sylvain Mousset
  4. Corinne Régis
  5. Simon Penel
  6. Jean-François Lemaitre
  7. Guillaume Douay
  8. Brigitte Crouau-Roy
  9. Emilie Lecompte
  10. Gabriel AB Marais  Is a corresponding author
  1. CNRS / Univ. Lyon 1, France
  2. University of Sheffield, United Kingdom
  3. University of Vienna, Austria
  4. Zoo de Lyon, France
  5. CNRS / Univ. Toulouse, France

Abstract

Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines.

Data availability

All the data generated in this study is available at NCBI (project # PRJNA482296)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rylan Shearn

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Allison E Wright

    Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvain Mousset

    Faculty of Mathematics, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Corinne Régis

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Penel

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-François Lemaitre

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Guillaume Douay

    Zoo de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Brigitte Crouau-Roy

    Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilie Lecompte

    Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5711-7395
  10. Gabriel AB Marais

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    For correspondence
    gabriel.marais@univ-lyon1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2134-5967

Funding

Agence Nationale de la Recherche (ANR-­‐12-­‐ BSV7-­‐0002-­‐04)

  • Gabriel AB Marais

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Shearn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,522
    views
  • 147
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rylan Shearn
  2. Allison E Wright
  3. Sylvain Mousset
  4. Corinne Régis
  5. Simon Penel
  6. Jean-François Lemaitre
  7. Guillaume Douay
  8. Brigitte Crouau-Roy
  9. Emilie Lecompte
  10. Gabriel AB Marais
(2020)
Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates
eLife 9:e63650.
https://doi.org/10.7554/eLife.63650

Share this article

https://doi.org/10.7554/eLife.63650

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.