Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates

  1. Rylan Shearn
  2. Alison E Wright
  3. Sylvain Mousset
  4. Corinne Régis
  5. Simon Penel
  6. Jean-François Lemaitre
  7. Guillaume Douay
  8. Brigitte Crouau-Roy
  9. Emilie Lecompte
  10. Gabriel AB Marais  Is a corresponding author
  1. CNRS / Univ. Lyon 1, France
  2. University of Sheffield, United Kingdom
  3. University of Vienna, Austria
  4. Zoo de Lyon, France
  5. CNRS / Univ. Toulouse, France

Abstract

Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines.

Data availability

All the data generated in this study is available at NCBI (project # PRJNA482296)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rylan Shearn

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Alison E Wright

    Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvain Mousset

    Faculty of Mathematics, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Corinne Régis

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Penel

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-François Lemaitre

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Guillaume Douay

    Zoo de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Brigitte Crouau-Roy

    Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilie Lecompte

    Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5711-7395
  10. Gabriel AB Marais

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    For correspondence
    gabriel.marais@univ-lyon1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2134-5967

Funding

Agence Nationale de la Recherche (ANR-­‐12-­‐ BSV7-­‐0002-­‐04)

  • Gabriel AB Marais

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Shearn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,449
    views
  • 134
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rylan Shearn
  2. Alison E Wright
  3. Sylvain Mousset
  4. Corinne Régis
  5. Simon Penel
  6. Jean-François Lemaitre
  7. Guillaume Douay
  8. Brigitte Crouau-Roy
  9. Emilie Lecompte
  10. Gabriel AB Marais
(2020)
Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates
eLife 9:e63650.
https://doi.org/10.7554/eLife.63650

Share this article

https://doi.org/10.7554/eLife.63650

Further reading

    1. Evolutionary Biology
    Zofia Dubicka, Jarosław Tyszka ... Ulf Bickmeyer
    Research Article

    Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ ‘mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineralization within intracellular vesicles’ attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Philipp H Schiffer, Paschalis Natsidis ... Maximilian J Telford
    Research Article

    The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help to understand the evolution and biology of enigmatic species better. Here we assemble and analyse the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome like scaffolds, with repeat content and intron, exon and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signalling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.