Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates

  1. Rylan Shearn
  2. Alison E Wright
  3. Sylvain Mousset
  4. Corinne Régis
  5. Simon Penel
  6. Jean-François Lemaitre
  7. Guillaume Douay
  8. Brigitte Crouau-Roy
  9. Emilie Lecompte
  10. Gabriel AB Marais  Is a corresponding author
  1. CNRS / Univ. Lyon 1, France
  2. University of Sheffield, United Kingdom
  3. University of Vienna, Austria
  4. Zoo de Lyon, France
  5. CNRS / Univ. Toulouse, France

Abstract

Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines.

Data availability

All the data generated in this study is available at NCBI (project # PRJNA482296)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rylan Shearn

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Alison E Wright

    Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvain Mousset

    Faculty of Mathematics, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Corinne Régis

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Penel

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-François Lemaitre

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Guillaume Douay

    Zoo de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Brigitte Crouau-Roy

    Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emilie Lecompte

    Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5711-7395
  10. Gabriel AB Marais

    LBBE, CNRS / Univ. Lyon 1, Villeurbanne, France
    For correspondence
    gabriel.marais@univ-lyon1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2134-5967

Funding

Agence Nationale de la Recherche (ANR-­‐12-­‐ BSV7-­‐0002-­‐04)

  • Gabriel AB Marais

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Virginie Courtier-Orgogozo, Institut Jacques Monod - CNRS UMR7592 - Université Paris Diderot

Version history

  1. Received: October 1, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 18, 2020 (version 1)
  4. Accepted Manuscript updated: November 19, 2020 (version 2)
  5. Version of Record published: December 4, 2020 (version 3)

Copyright

© 2020, Shearn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,414
    Page views
  • 130
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rylan Shearn
  2. Alison E Wright
  3. Sylvain Mousset
  4. Corinne Régis
  5. Simon Penel
  6. Jean-François Lemaitre
  7. Guillaume Douay
  8. Brigitte Crouau-Roy
  9. Emilie Lecompte
  10. Gabriel AB Marais
(2020)
Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates
eLife 9:e63650.
https://doi.org/10.7554/eLife.63650

Share this article

https://doi.org/10.7554/eLife.63650

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Jonathan E Phillips, Duojia Pan
    Research Advance

    The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Zachary Paul Billman, Stephen Bela Kovacs ... Edward A Miao
    Research Article

    Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA–D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.