An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming

Abstract

It has been known adipocytes increase p53 expression and activity in obesity, however, only canonical p53 functions (i.e., senescence and apoptosis) are attributed to inflammation-associated metabolic phenotypes. Whether or not p53 is directly involved in mature adipocyte metabolic regulation remains unclear. Here we show p53 protein expression can be up-regulated in adipocytes by nutrient starvation without activating cell senescence, apoptosis, or a death-related p53 canonical pathway. Inducing the loss of p53 in mature adipocytes significantly reprograms energy metabolism and this effect is primarily mediated through a AMP-activated protein kinase (AMPK) pathway and a novel downstream transcriptional target, lysosomal acid lipase (LAL). The pathophysiological relevance is further demonstrated in a conditional and adipocyte-specific p53 knockout mouse model. Overall, these data support a non-canonical p53 function in the regulation of adipocyte energy homeostasis and indicate that the dysregulation of this pathway may be involved in developing metabolic dysfunction in obesity.

Data availability

There is no dataset associated with this manuscript.

Article and author information

Author details

  1. Hong Wang

    Biochemistry, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xueping Wan

    Pharmacology and Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul Pilch

    Biochemistry, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1997-0499
  4. Leif Ellisen

    Pharmacology and Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan Fried

    Pharmacology and Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Libin Liu

    Pharmacology and Experimental Therapeutics, Boston University, Boston, United States
    For correspondence
    libin@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5056-1517

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK-112945)

  • Libin Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Czech, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: All animal studies were performed in accordance with the guidelines and under approval of the Institutional Review Committee for the Animal Care and Use of Boston University. (Protocol #201800404).

Version history

  1. Received: October 1, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Accepted Manuscript updated: December 18, 2020 (version 2)
  5. Version of Record published: December 23, 2020 (version 3)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,948
    views
  • 331
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hong Wang
  2. Xueping Wan
  3. Paul Pilch
  4. Leif Ellisen
  5. Susan Fried
  6. Libin Liu
(2020)
An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming
eLife 9:e63665.
https://doi.org/10.7554/eLife.63665

Share this article

https://doi.org/10.7554/eLife.63665

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.