An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming

  1. Hong Wang
  2. Xueping Wan
  3. Paul F Pilch
  4. Leif W Ellisen
  5. Susan K Fried
  6. Libin Liu  Is a corresponding author
  1. Boston University, United States
  2. Massachusetts General Hospital Cancer Center and Harvard Medical School, United States
  3. Icahn School of Medicine at Mount Sinai, United States

Abstract

It has been known adipocytes increase p53 expression and activity in obesity, however, only canonical p53 functions (i.e., senescence and apoptosis) are attributed to inflammation-associated metabolic phenotypes. Whether or not p53 is directly involved in mature adipocyte metabolic regulation remains unclear. Here we show p53 protein expression can be up-regulated in adipocytes by nutrient starvation without activating cell senescence, apoptosis, or a death-related p53 canonical pathway. Inducing the loss of p53 in mature adipocytes significantly reprograms energy metabolism and this effect is primarily mediated through a AMP-activated protein kinase (AMPK) pathway and a novel downstream transcriptional target, lysosomal acid lipase (LAL). The pathophysiological relevance is further demonstrated in a conditional and adipocyte-specific p53 knockout mouse model. Overall, these data support a non-canonical p53 function in the regulation of adipocyte energy homeostasis and indicate that the dysregulation of this pathway may be involved in developing metabolic dysfunction in obesity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for figures.

Article and author information

Author details

  1. Hong Wang

    Department of Pharmacology & Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xueping Wan

    Department of Pharmacology & Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul F Pilch

    Department of Biochemistry, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1997-0499
  4. Leif W Ellisen

    Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan K Fried

    Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Libin Liu

    Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, United States
    For correspondence
    libin@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5056-1517

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK-112945)

  • Libin Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were performed in accordance with the guidelines and under approval of the Institutional Review Committee for the Animal Care and Use of Boston University. (Protocol #201800404).

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,057
    views
  • 349
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hong Wang
  2. Xueping Wan
  3. Paul F Pilch
  4. Leif W Ellisen
  5. Susan K Fried
  6. Libin Liu
(2020)
An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming
eLife 9:e63665.
https://doi.org/10.7554/eLife.63665

Share this article

https://doi.org/10.7554/eLife.63665

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.