An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming

  1. Hong Wang
  2. Xueping Wan
  3. Paul F Pilch
  4. Leif W Ellisen
  5. Susan K Fried
  6. Libin Liu  Is a corresponding author
  1. Boston University, United States
  2. Massachusetts General Hospital Cancer Center and Harvard Medical School, United States
  3. Icahn School of Medicine at Mount Sinai, United States

Abstract

It has been known adipocytes increase p53 expression and activity in obesity, however, only canonical p53 functions (i.e., senescence and apoptosis) are attributed to inflammation-associated metabolic phenotypes. Whether or not p53 is directly involved in mature adipocyte metabolic regulation remains unclear. Here we show p53 protein expression can be up-regulated in adipocytes by nutrient starvation without activating cell senescence, apoptosis, or a death-related p53 canonical pathway. Inducing the loss of p53 in mature adipocytes significantly reprograms energy metabolism and this effect is primarily mediated through a AMP-activated protein kinase (AMPK) pathway and a novel downstream transcriptional target, lysosomal acid lipase (LAL). The pathophysiological relevance is further demonstrated in a conditional and adipocyte-specific p53 knockout mouse model. Overall, these data support a non-canonical p53 function in the regulation of adipocyte energy homeostasis and indicate that the dysregulation of this pathway may be involved in developing metabolic dysfunction in obesity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for figures.

Article and author information

Author details

  1. Hong Wang

    Department of Pharmacology & Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xueping Wan

    Department of Pharmacology & Experimental Therapeutics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul F Pilch

    Department of Biochemistry, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1997-0499
  4. Leif W Ellisen

    Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan K Fried

    Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Libin Liu

    Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, United States
    For correspondence
    libin@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5056-1517

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK-112945)

  • Libin Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were performed in accordance with the guidelines and under approval of the Institutional Review Committee for the Animal Care and Use of Boston University. (Protocol #201800404).

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,069
    views
  • 350
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hong Wang
  2. Xueping Wan
  3. Paul F Pilch
  4. Leif W Ellisen
  5. Susan K Fried
  6. Libin Liu
(2020)
An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming
eLife 9:e63665.
https://doi.org/10.7554/eLife.63665

Share this article

https://doi.org/10.7554/eLife.63665

Further reading

    1. Cell Biology
    Masroor Ahmad Paddar, Fulong Wang ... Vojo Deretic
    Research Article

    ATG5 is one of the core autophagy proteins with additional functions such as noncanonical membrane atg8ylation, which among a growing number of biological outputs includes control of tuberculosis in animal models. Here, we show that ATG5 associates with retromer’s core components VPS26, VPS29, and VPS35 and modulates retromer function. Knockout of ATG5 blocked trafficking of a key glucose transporter sorted by the retromer, GLUT1, to the plasma membrane. Knockouts of other genes essential for membrane atg8ylation, of which ATG5 is a component, affected GLUT1 sorting, indicating that membrane atg8ylation as a process affects retromer function and endosomal sorting. The contribution of membrane atg8ylation to retromer function in GLUT1 sorting was independent of canonical autophagy. These findings expand the scope of membrane atg8ylation to specific sorting processes in the cell dependent on the retromer and its known interactors.

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.