Multiple decisions about one object involve parallel sensory acquisition but time-multiplexed evidence incorporation

  1. Yul HR Kang  Is a corresponding author
  2. Anne Löffler
  3. Danique Jeurissen
  4. Ariel Zylberberg
  5. Daniel M Wolpert
  6. Michael N Shadlen  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Columbia University, United States
  3. University of Rochester, United States

Abstract

The brain is capable of processing several streams of information that bear on different aspects of the same problem. Here we address the problem of making two decisions about one object, by studying difficult perceptual decisions about the color and motion of a dynamic random dot display. We find that the accuracy of one decision is unaffected by the difficulty of the other decision. However, the response times reveal that the two decisions do not form simultaneously. We show that both stimulus dimensions are acquired in parallel for the initial ∼0.1 s but are then incorporated serially in time-multiplexed bouts. Thus there is a bottleneck that precludes updating more than one decision at a time, and a buffer that stores samples of evidence while access to the decision is blocked. We suggest that this bottleneck is responsible for the long timescales of many cognitive operations framed as decisions.

Data availability

The data is on figshare at: https://dx.doi.org/10.6084/m9.figshare.13607255The code is available at the following repository: https://github.com/yulkang/2D_DecisionThe figshare (allows deposition of big data) and github (suitable for maintenance of code) repositories refer to each other.

The following data sets were generated

Article and author information

Author details

  1. Yul HR Kang

    Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    yul.hr.kang@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8846-5296
  2. Anne Löffler

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Danique Jeurissen

    Kavli Institute, Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3835-5977
  4. Ariel Zylberberg

    Brain and Cognitive Sciences, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2572-4748
  5. Daniel M Wolpert

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2011-2790
  6. Michael N Shadlen

    Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    shadlen@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2002-2210

Funding

National Eye Institute (T32EY01393)

  • Yul HR Kang

Simons Foundation (414196)

  • Danique Jeurissen

Brain and Behavior Research Foundation (28476)

  • Danique Jeurissen

Howard Hughes Medical Institute

  • Michael N Shadlen

National Eye Institute (R01EY11378)

  • Michael N Shadlen

National Institute of Neurological Disorders and Stroke (R01NS113113)

  • Michael N Shadlen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the local ethics committee (Institutional Review Board of Columbia University Medical Center IRB-AAAL0658 & IRB-AAAR9148
). Thirteen participants (5 male and 8 female, age 23-40, median = 26, IQR = 25-32, mean = 28.3, SD = 5.74) provided written informed consent and took part in the study

Copyright

© 2021, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,400
    views
  • 468
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yul HR Kang
  2. Anne Löffler
  3. Danique Jeurissen
  4. Ariel Zylberberg
  5. Daniel M Wolpert
  6. Michael N Shadlen
(2021)
Multiple decisions about one object involve parallel sensory acquisition but time-multiplexed evidence incorporation
eLife 10:e63721.
https://doi.org/10.7554/eLife.63721

Share this article

https://doi.org/10.7554/eLife.63721

Further reading

    1. Neuroscience
    Sisi Wang, Freek van Ede
    Research Article

    A classic distinction from the domain of external attention is that between anticipatory orienting and subsequent re-orienting of attention to unexpected events. Whether and how humans also re-orient attention ‘in mind’ following expected and unexpected working-memory tests remains elusive. We leveraged spatial modulations in neural activity and gaze to isolate re-orienting within the spatial layout of visual working memory following central memory tests of certain, expected, or unexpected mnemonic content. Besides internal orienting after predictive cues, we unveil a second stage of internal attentional deployment following both expected and unexpected memory tests. Following expected tests, internal attentional deployment was not contingent on prior orienting, suggesting an additional verification – ‘double checking’ – in memory. Following unexpected tests, re-focusing of alternative memory content was prolonged. This brings attentional re-orienting to the domain of working memory and underscores how memory tests can invoke either a verification or a revision of our internal focus.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.