Perinatal granulopoiesis and risk of pediatric asthma

  1. Benjamin A Turturice  Is a corresponding author
  2. Juliana Theorell
  3. Mary Dawn Koenig
  4. Lisa Tussing-Humphreys
  5. Diane R Gold
  6. Augusto A Litonjua
  7. Emily Oken
  8. Sheryl L Rifas-Shiman
  9. David L Perkins  Is a corresponding author
  10. Patricia W Finn  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. Brigham and Women's Hospital, Harvard Medical School, United States
  3. University of Rochester, United States
  4. Harvard Medical School and Harvard Pilgrim Health Care Institute, United States

Abstract

There are perinatal characteristics, such as gestational age, reproducibly associated with risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation were observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.

Data availability

Data from RNAseq is available on NCBI Bioproject database PRJNA577955.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Benjamin A Turturice

    Department of Microbiology and Immunology, Department of Medicine, University of Illinois at Chicago, Chicago, United States
    For correspondence
    bturtu2@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9382-4612
  2. Juliana Theorell

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mary Dawn Koenig

    Department of Women, Children and Family Health Science, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lisa Tussing-Humphreys

    Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Diane R Gold

    Channing Division of Network Medicine, Department of Medicine, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Augusto A Litonjua

    Department of Pediatrics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Emily Oken

    Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sheryl L Rifas-Shiman

    Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David L Perkins

    Department of Medicine, University of Illinois at Chicago, Chicago, United States
    For correspondence
    perkinsd@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Patricia W Finn

    Department of Microbiology and Immunology, Department of Medicine, Department of Bioengineering, University of Illinois at Chicago, Chicago, United States
    For correspondence
    pwfinn@uic.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Heart, Lung, and Blood Institute (F30HL136001)

  • Benjamin A Turturice

National Institute of Allergy and Infectious Diseases (R01AI053878)

  • Patricia W Finn

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD034568)

  • Emily Oken

National Institutes of Health (UH3OD023286)

  • Emily Oken

Robert Wood Johnson Foundation (Nurse Faculty Scholars Program #72117)

  • Mary Dawn Koenig

University of Illinois at Chicago (College of Nursing Dean's Award)

  • Mary Dawn Koenig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The current study was approved by the University of Illinois at Chicago IRB, 20160326 and 20150353, and the IRB of Harvard Pilgrim Health Care.

Copyright

© 2021, Turturice et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,473
    views
  • 129
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin A Turturice
  2. Juliana Theorell
  3. Mary Dawn Koenig
  4. Lisa Tussing-Humphreys
  5. Diane R Gold
  6. Augusto A Litonjua
  7. Emily Oken
  8. Sheryl L Rifas-Shiman
  9. David L Perkins
  10. Patricia W Finn
(2021)
Perinatal granulopoiesis and risk of pediatric asthma
eLife 10:e63745.
https://doi.org/10.7554/eLife.63745

Share this article

https://doi.org/10.7554/eLife.63745

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.