Perinatal granulopoiesis and risk of pediatric asthma
Abstract
There are perinatal characteristics, such as gestational age, reproducibly associated with risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation were observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
Data availability
Data from RNAseq is available on NCBI Bioproject database PRJNA577955.
-
Whole blood mRNA expression profiling of host molecular networks in neonatal sepsisNCBI Gene Expression Omnibus, GSE25504.
-
Comprehensive Study of Tobacco Smoke-Related Transcriptome Alterations in Maternal and Fetal CellsNCBI Gene Expression Omnibus, GSE27272.
-
Deregulation of Gene Expression induced by Environmental Tobacco Smoke Exposure in PregnancyNCBI Gene Expression Omnibus, GSE30032.
-
Genome-wide analysis of gene expression levels in placenta and cord blood samples from newborns babiesNCBI Gene Expression Omnibus, GSE36828.
-
Prenatal arsenic exposure and the epigenome: altered gene expression profiles in newborn cord bloodNCBI Gene Expression Omnibus, GSE48354.
-
Standard of hygiene and immune adaptation in newborn infantsNCBI Gene Expression Omnibus, GSE53473.
-
The obese fetal transcriptomeNCBI Gene Expression Omnibus, GSE60403.
Article and author information
Author details
Funding
National Heart, Lung, and Blood Institute (F30HL136001)
- Benjamin A Turturice
National Institute of Allergy and Infectious Diseases (R01AI053878)
- Patricia W Finn
Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD034568)
- Emily Oken
National Institutes of Health (UH3OD023286)
- Emily Oken
Robert Wood Johnson Foundation (Nurse Faculty Scholars Program #72117)
- Mary Dawn Koenig
University of Illinois at Chicago (College of Nursing Dean's Award)
- Mary Dawn Koenig
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The current study was approved by the University of Illinois at Chicago IRB, 20160326 and 20150353, and the IRB of Harvard Pilgrim Health Care.
Copyright
© 2021, Turturice et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,503
- views
-
- 130
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.