Redox controls RecA protein activity via reversible oxidation of its methionine residues

  1. Camille Henry
  2. Laurent Loiseau
  3. Alexandra Vergnes
  4. Didier Vertommen
  5. Angela Mérida-Floriano
  6. Sindhu Chitteni-Pattu
  7. Elizabeth A Wood
  8. Josep Casadesús
  9. Michael M Cox
  10. Frédéric Barras  Is a corresponding author
  11. Benjamin Ezraty  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. CNRS, France
  3. Université Catholique de Louvain, Belgium
  4. Universidad de Sevilla, Spain

Abstract

Reactive oxygen species (ROS) cause damage to DNA and proteins. Here we report that the RecA recombinase is itself oxidized by ROS. Genetic and biochemical analyses revealed that oxidation of RecA altered its DNA repair and DNA recombination activities. Mass spectrometry analysis showed that exposure to ROS converted 4 out of 9 Met residues of RecA to methionine sulfoxide. Mimicking oxidation of Met35 by changing it for Gln caused complete loss of function whereas mimicking oxidation of Met164 resulted in constitutive SOS activation and loss of recombination activity. Yet, all ROS-induced alterations of RecA activity were suppressed by methionine sulfoxide reductases MsrA and MsrB. These findings indicate that under oxidative stress, MsrA/B is needed for RecA homeostasis control. The implication is that, besides damaging DNA structure directly, ROS prevent repair of DNA damage by hampering RecA activity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided in Dryad (doi:10.5061/dryad.zpc866t78).

The following data sets were generated

Article and author information

Author details

  1. Camille Henry

    Departement of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Laurent Loiseau

    Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Vergnes

    Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Didier Vertommen

    Protein Phosphorylation Unit, de Duve Institute,, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Mérida-Floriano

    Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9650-7759
  6. Sindhu Chitteni-Pattu

    Departement of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Wood

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Josep Casadesús

    Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2308-293X
  9. Michael M Cox

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3606-5722
  10. Frédéric Barras

    Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
    For correspondence
    frederic.barras@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. Benjamin Ezraty

    Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
    For correspondence
    ezraty@imm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3818-6907

Funding

Agence Nationale de la Recherche (ANR-METOXIC)

  • Benjamin Ezraty

Centre National de la Recherche Scientifique (PICS-PROTOX)

  • Benjamin Ezraty

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Frédéric Barras

Fondation pour la Recherche Médicale

  • Camille Henry

Aix-Marseille Université (AMidex)

  • Camille Henry

National Institute of General Medical Sciences (GM32335)

  • Michael M Cox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Henry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,526
    views
  • 367
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camille Henry
  2. Laurent Loiseau
  3. Alexandra Vergnes
  4. Didier Vertommen
  5. Angela Mérida-Floriano
  6. Sindhu Chitteni-Pattu
  7. Elizabeth A Wood
  8. Josep Casadesús
  9. Michael M Cox
  10. Frédéric Barras
  11. Benjamin Ezraty
(2021)
Redox controls RecA protein activity via reversible oxidation of its methionine residues
eLife 10:e63747.
https://doi.org/10.7554/eLife.63747

Share this article

https://doi.org/10.7554/eLife.63747

Further reading

    1. Microbiology and Infectious Disease
    Srinivasan Vijay, Nguyen Le Hoai Bao ... Nguyen Thuy Thuong
    Research Article

    Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15–60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.