Redox controls RecA protein activity via reversible oxidation of its methionine residues

  1. Camille Henry
  2. Laurent Loiseau
  3. Alexandra Vergnes
  4. Didier Vertommen
  5. Angela Mérida-Floriano
  6. Sindhu Chitteni-Pattu
  7. Elizabeth A Wood
  8. Josep Casadesús
  9. Michael M Cox
  10. Frédéric Barras  Is a corresponding author
  11. Benjamin Ezraty  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Aix-Marseille University, CNRS, France
  3. Université Catholique de Louvain, Belgium
  4. Universidad de Sevilla, Spain
  5. Institut Pasteur, France

Abstract

Reactive oxygen species (ROS) cause damage to DNA and proteins. Here we report that the RecA recombinase is itself oxidized by ROS. Genetic and biochemical analyses revealed that oxidation of RecA altered its DNA repair and DNA recombination activities. Mass spectrometry analysis showed that exposure to ROS converted 4 out of 9 Met residues of RecA to methionine sulfoxide. Mimicking oxidation of Met35 by changing it for Gln caused complete loss of function whereas mimicking oxidation of Met164 resulted in constitutive SOS activation and loss of recombination activity. Yet, all ROS-induced alterations of RecA activity were suppressed by methionine sulfoxide reductases MsrA and MsrB. These findings indicate that under oxidative stress, MsrA/B is needed for RecA homeostasis control. The implication is that, besides damaging DNA structure directly, ROS prevent repair of DNA damage by hampering RecA activity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided in Dryad (doi:10.5061/dryad.zpc866t78).

The following data sets were generated

Article and author information

Author details

  1. Camille Henry

    Departement of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Laurent Loiseau

    Laboratoire de Chimie Bactérienne, Aix-Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Vergnes

    Laboratoire de Chimie Bactérienne, Aix-Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Didier Vertommen

    Protein Phosphorylation Unit, de Duve Institute,, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Mérida-Floriano

    Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9650-7759
  6. Sindhu Chitteni-Pattu

    Departement of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Wood

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Josep Casadesús

    Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2308-293X
  9. Michael M Cox

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3606-5722
  10. Frédéric Barras

    Institut Pasteur, Paris, France
    For correspondence
    frederic.barras@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. Benjamin Ezraty

    Laboratoire de Chimie Bactérienne, Aix-Marseille University, CNRS, Marseille, France
    For correspondence
    ezraty@imm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3818-6907

Funding

Agence Nationale de la Recherche (ANR-METOXIC)

  • Benjamin Ezraty

Centre National de la Recherche Scientifique (PICS-PROTOX)

  • Benjamin Ezraty

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Frédéric Barras

Fondation pour la Recherche Médicale

  • Camille Henry

Aix-Marseille Université (AMidex)

  • Camille Henry

National Institute of General Medical Sciences (GM32335)

  • Michael M Cox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Henry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,571
    views
  • 377
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camille Henry
  2. Laurent Loiseau
  3. Alexandra Vergnes
  4. Didier Vertommen
  5. Angela Mérida-Floriano
  6. Sindhu Chitteni-Pattu
  7. Elizabeth A Wood
  8. Josep Casadesús
  9. Michael M Cox
  10. Frédéric Barras
  11. Benjamin Ezraty
(2021)
Redox controls RecA protein activity via reversible oxidation of its methionine residues
eLife 10:e63747.
https://doi.org/10.7554/eLife.63747

Share this article

https://doi.org/10.7554/eLife.63747

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.