Redox controls RecA protein activity via reversible oxidation of its methionine residues
Abstract
Reactive oxygen species (ROS) cause damage to DNA and proteins. Here we report that the RecA recombinase is itself oxidized by ROS. Genetic and biochemical analyses revealed that oxidation of RecA altered its DNA repair and DNA recombination activities. Mass spectrometry analysis showed that exposure to ROS converted 4 out of 9 Met residues of RecA to methionine sulfoxide. Mimicking oxidation of Met35 by changing it for Gln caused complete loss of function whereas mimicking oxidation of Met164 resulted in constitutive SOS activation and loss of recombination activity. Yet, all ROS-induced alterations of RecA activity were suppressed by methionine sulfoxide reductases MsrA and MsrB. These findings indicate that under oxidative stress, MsrA/B is needed for RecA homeostasis control. The implication is that, besides damaging DNA structure directly, ROS prevent repair of DNA damage by hampering RecA activity.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided in Dryad (doi:10.5061/dryad.zpc866t78).
-
Redox controls RecA protein activity via reversible oxidation of its methionine residuesDryad Digital Repository, doi:10.5061/dryad.zpc866t78.
Article and author information
Author details
Funding
Agence Nationale de la Recherche (ANR-METOXIC)
- Benjamin Ezraty
Centre National de la Recherche Scientifique (PICS-PROTOX)
- Benjamin Ezraty
Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)
- Frédéric Barras
Fondation pour la Recherche Médicale
- Camille Henry
Aix-Marseille Université (AMidex)
- Camille Henry
National Institute of General Medical Sciences (GM32335)
- Michael M Cox
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Stephen C Kowalczykowski, University of California, Davis, United States
Publication history
- Received: October 6, 2020
- Accepted: February 18, 2021
- Accepted Manuscript published: February 19, 2021 (version 1)
- Accepted Manuscript updated: February 23, 2021 (version 2)
- Version of Record published: March 8, 2021 (version 3)
Copyright
© 2021, Henry et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,962
- Page views
-
- 273
- Downloads
-
- 9
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Microbiology and Infectious Disease
Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked teichoic acids (LTAs). Because LytA binds to both species of teichoic acids, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation during exponential growth and premature lysis. We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active PG synthesis. Our results support a model in which the WTA tailoring activity of WhyD during exponential growth directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.
-
- Evolutionary Biology
- Microbiology and Infectious Disease
Overlapping coding regions balance selective forces between multiple genes. One possible division of nucleotide sequence is that the predominant selective force on a particular nucleotide can be attributed to just one gene. While this arrangement has been observed in regions in which one gene is structured and the other is disordered, we sought to explore how overlapping genes balance constraints when both protein products are structured over the same sequence. We use a combination of sequence analysis, functional assays, and selection experiments to examine an overlapped region in HIV-1 that encodes helical regions in both Env and Rev. We find that functional segregation occurs even in this overlap, with each protein spacing its functional residues in a manner that allows a mutable non-binding face of one helix to encode important functional residues on a charged face in the other helix. Additionally, our experiments reveal novel and critical functional residues in Env and have implications for the therapeutic targeting of HIV-1.