Glycine acylation and trafficking of a new class of bacterial lipoprotein by a composite secretion system

  1. Christopher Icke
  2. Freya J Hodges
  3. Karthik Pullela
  4. Samantha A McKeand
  5. Jack Alfred Bryant
  6. Adam F Cunningham
  7. Jeff A Cole
  8. Ian R Henderson  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. University of Queensland, Australia

Abstract

Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Christopher Icke

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7815-8591
  2. Freya J Hodges

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Karthik Pullela

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Samantha A McKeand

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jack Alfred Bryant

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7912-2144
  6. Adam F Cunningham

    Institute of Microbiology and Infection, Institute of Inflammation and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeff A Cole

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ian R Henderson

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    For correspondence
    i.henderson@imb.uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9954-4977

Funding

Biotechnology and Biological Sciences Research Council (DTP)

  • Adam F Cunningham
  • Ian R Henderson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Icke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,943
    views
  • 247
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher Icke
  2. Freya J Hodges
  3. Karthik Pullela
  4. Samantha A McKeand
  5. Jack Alfred Bryant
  6. Adam F Cunningham
  7. Jeff A Cole
  8. Ian R Henderson
(2021)
Glycine acylation and trafficking of a new class of bacterial lipoprotein by a composite secretion system
eLife 10:e63762.
https://doi.org/10.7554/eLife.63762

Share this article

https://doi.org/10.7554/eLife.63762

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.