Glycine acylation and trafficking of a new class of bacterial lipoprotein by a composite secretion system

  1. Christopher Icke
  2. Freya J Hodges
  3. Karthik Pullela
  4. Samantha A McKeand
  5. Jack Alfred Bryant
  6. Adam F Cunningham
  7. Jeff A Cole
  8. Ian R Henderson  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. University of Queensland, Australia

Abstract

Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Christopher Icke

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7815-8591
  2. Freya J Hodges

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Karthik Pullela

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Samantha A McKeand

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jack Alfred Bryant

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7912-2144
  6. Adam F Cunningham

    Institute of Microbiology and Infection, Institute of Inflammation and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeff A Cole

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ian R Henderson

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    For correspondence
    i.henderson@imb.uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9954-4977

Funding

Biotechnology and Biological Sciences Research Council (DTP)

  • Adam F Cunningham
  • Ian R Henderson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Icke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,856
    views
  • 238
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher Icke
  2. Freya J Hodges
  3. Karthik Pullela
  4. Samantha A McKeand
  5. Jack Alfred Bryant
  6. Adam F Cunningham
  7. Jeff A Cole
  8. Ian R Henderson
(2021)
Glycine acylation and trafficking of a new class of bacterial lipoprotein by a composite secretion system
eLife 10:e63762.
https://doi.org/10.7554/eLife.63762

Share this article

https://doi.org/10.7554/eLife.63762

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.