1. Neuroscience
  2. Structural Biology and Molecular Biophysics
Download icon

The mammalian rod synaptic ribbon is essential for Cav channel facilitation and ultrafast synaptic vesicle fusion

  1. Chad Paul Grabner  Is a corresponding author
  2. Tobias Moser
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. University Medical Center Göttingen, Germany
Research Article
  • Cited 0
  • Views 249
  • Annotations
Cite this article as: eLife 2021;10:e63844 doi: 10.7554/eLife.63844


Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal 'no light detected' they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod's individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild type and ribbonless (Ribeye-ko) mice. Wild type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca2+-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ < 0.4 msec. The lower concentration of EGTA accelerated Cav channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven light responses. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.

Data availability

All analytic tools are described in the Methods section, and they are commercially available. All data and statistical analyses are described throughout the manuscript and in the Methods.

Article and author information

Author details

  1. Chad Paul Grabner

    Synaptic Nanophysiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7885-7627
  2. Tobias Moser

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7145-0533


Deutsche Forschungsgemeinschaft (Leibniz Award)

  • Tobias Moser

Deutsche Forschungsgemeinschaft (ExC 2067)

  • Tobias Moser

Deutsche Forschungsgemeinschaft (CRC 1286,project C08)

  • Tobias Moser

Deutsche Forschungsgemeinschaft (Multiscale Bioimaging Cluster of Excellence,ExC 2067)

  • Tobias Moser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: All experiments complied with national animal care guidelines and were approved by the University of Götingen Board for Animal Welfare and the Animal Welfare Office of the State of Lower Saxony (permit number: 14-1391).

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Publication history

  1. Received: October 9, 2020
  2. Accepted: October 6, 2021
  3. Accepted Manuscript published: October 7, 2021 (version 1)


© 2021, Grabner & Moser

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 249
    Page views
  • 61
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article Updated

    Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.

    1. Neuroscience
    Renée S Koolschijn et al.
    Research Article Updated

    The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.