Human cytomegalovirus antagonizes activation of Fcγ receptors by distinct and synergizing modes of IgG manipulation

  1. Philipp Kolb
  2. Katja Hoffmann
  3. Annika Sievert
  4. Henrike Reinhard
  5. Eva Merce-Maldonado
  6. Vu Thuy Khanh Le-Trilling
  7. Anne Halenius
  8. Dominique Gütle
  9. Hartmut Hengel  Is a corresponding author
  1. Faculty of Medicine, Albert-Ludwigs-University Freiburg, Germany
  2. Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Germany
  3. Institute of Virology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
  4. Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Germany
7 figures, 1 table and 1 additional file

Figures

Figure 1 with 2 supplements
gp34 and gp68 simultaneously bind to IgG using distinct epitopes.

(A) CV-1 cells were infected with rVACVs expressing gp34, gp68, or the host Fc-receptors FcγRIIA and FcγRI at a multiplicity of infection of 4 for 14 hr before metabolic labeling. Proteins were …

Figure 1—figure supplement 1
Immunoblot detection of human cytomegalovirus (HCMV) glycoproteins in the supernatant of Hek293T producer cells.

Soluble constructs of gp34 or gp34mtrp (sgp34 and sgp34mtrp, both streptavidin-tagged) or gp68 (gp68s, 6xHis-tagged) lacking a transmembrane domain and cytosolic tail were recombinant expressed in …

Figure 1—figure supplement 2
Fcγ-binding deficient mutant of gp34.

(A) Schematic depiction of soluble gp34 of AD169 (sgp34) with indicated signal peptide (small gray box) and Ig-like domain (large gray box), O-glycosylation sites (gray dots), N-glycosylation sites …

Figure 2 with 1 supplement
gp34 and gp68 synergistically antagonize FcγR activation.

(A) MRC-5 or human foreskin fibroblasts (HFF) cells were infected with human cytomegalovirus (HCMV) AD169 mutant viruses lacking different combinations of vFcγRs (Multiplicity of Infection [MOI] = 3,…

Figure 2—figure supplement 1
Schematic depiction of the experimental setup of a cell-based FcγR activation assay.

Infected or antigen-transfected cells are opsonized using virus-specific or antigen-specific antibody preparations. BW5147 reporter cells stably expressing chimeric human FcγR receptor ectodomains …

Figure 3 with 2 supplements
Native gp34 efficiently internalizes immune complexes.

(A) Sequence alignment of human cytomegalovirus (HCMV) AD169 BAC-2 encoded glycoproteins gp34 (RL11, P16809) and gp68 (UL119-118, P16739). Cellular localization motifs are highlighted in green. (B) …

Figure 3—figure supplement 1
Alignment of selected herpesvirus glycoproteins present on the surface of an infected cell.

Green = localization signal. Human cytomegalovirus (HCMV) gp34 (RL11, P16809), gp68 (UL119-118, P16739), gB (UL55, P06473), gp95 (RL12, P16810), and gpRL13 (RL13, Q6SWC9). HSV-1 gE (US8, P04488). …

Figure 3—figure supplement 2
Internalization of CD20/Rtx immune complexes and non-immune IgG in dependence of vFcγR expression.

Internalization kinetics was measured by loss of surface signal over time in a pulse-chase approach detecting residual surface complexes via a PE-conjugated mouse-anti-human-IgG antibody. 293 T …

Figure 4 with 1 supplement
gp68 blocks binding of human FcγRIII to immune complexes.

(A) 293 T-CD20 cells were transfected with indicated constructs encoded on a pIRES_eGFP vector. CD99 served as a non-Fcγ-binding control. Gating strategy and CD20 expression in dependence of vFcγR …

Figure 4—figure supplement 1
gp68 is not able to block FcγRI binding to IC.

Hek293T cells stably expressing CD20 and opsonized with Rtx were assayed for FcγRI ectodomain binding in the presence or absence of gp68-CD4 as described in Figure 4. Error bars = SD. Three …

Figure 5 with 2 supplements
Human cytomegalovirus (HCMV) gp68, but not gp34 blocks binding of human FcγRIII to opsonized HCMV-infected cells.

MRC-5 cells were infected with mutant HCMV Ad169 viruses lacking different vFcγR encoding genes at MOI = 2 and measured 72dpi via flow cytometry. ΔΔΔ = ΔRL11/ΔRL12/ΔUL119-118. ΔUL119 = ΔUL119-118. (A

Figure 5—figure supplement 1
Gp68, but not gp34, binds IgG simultaneously to FcγRIII.

(A) Schematic of the experimental setup. As in Figure 4, using HER-2-specific Herceptin (Hc) replacing Rtx. Human cytomegalovirus (HCMV) vFcγRs gp34 or gp68 were transiently expressed by 293 T cells …

Figure 5—figure supplement 2
Human cytomegalovirus (HCMV) gp68 reduces binding of human FcγRII ectodomains to opsonized-infected cells.

MRC-5 cells were infected with mutant HCMV AD169 pBAC2-derived viruses lacking different vFcγR encoding genes at MOI = 2 and measured 72dpi via flow cytometry. ΔΔΔ = ΔRL11/ΔRL12/ΔUL119-118. ΔUL119 = …

Figure 6 with 1 supplement
gp34 and gp68 synergistically antagonize.

FcγRIIIA in the absence and presence of non-immune IgG and show cooperativity. (A) Increased membrane-residence enhances antagonistic potential of gp68 and reduces antagonistic potential of gp34. …

Figure 6—figure supplement 1
Human cytomegalovirus (HCMV) gH surface expression on HCMV-infected cells.

MRC-5 cells were infected using a vFcγR-deleted (ddd) AD169 BAC-2 derived mutant virus (MOI = 2) and gH surface expression was detected at 72hpi using MSL-109 (humanized anti-HCMV gH, 10 µg/ml) and …

Graphical summary.

NK cells elicit a powerful antibody-mediated antiviral response through antibody-dependent cellular cytotoxicity (ADCC). gp68 (ochroid) binds IgG in a 2:1 ratio reducing, but not abolishing …

Tables

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Gene (HCMV)UL119-118This paperMN900952.1
Gene (HCMV)RL11This paperMN900952.1
Gene (Homo sapiens)CD4This paperBT019791.1
Gene (HSV-1)US8This paperMN136524.1
Gene (HSV-1)US7This paperMN136524.1
Strain, strain background
E. coli
NEB5-alphaNEBC2987Made chemically competent for cloning via CaCl2
Strain, strain background (HCMV)AD169-BAC2doi:10.1016/j.celrep.2020MN900952.1
Genetic reagent Mus musculusBW5147 FcγR-reporter cellsdoi:10.1016/j.jim.2012.09.006
Genetic reagent (H. sapiens)Hek-CD20Kindly provided by Irvin Chen, UCLALentiviral transduction
Genetic reagent (H. sapiens)BJ-Her2This paperLentiviral transduction as in doi:10.1128/JVI.01923-10
Cell line (H. sapiens)HelaATCCCCL-2
Cell line
(H. sapiens)
MRC-5ECACC05090501
Cell line (H. sapiens)HFF
Human foreskin fibroblasts
Kindly provided by Dieter Neumann-Haefelin and Valeria Kapper-Falcone, Institute of Virology, Freiburg, Freiburg, GermanyHF-99/7
Cell line (H. sapiens)BJ-5taATCCCRL-4001
Cell line (H. sapiens)293T-CD20Kindly provided by Irvin Chen, UCLA, USA
Cell line (M. musculus)BW5147Kindly provided by Ofer Mandelboim, Hadassah Hospital, Jerusalem, IsraelFcR-expressing cell lines as in Corrales-Aguilar et al., 2013
Cell line (H. sapiens)PBMCPrimary human cellsPrimary cells isolated from human donors
Transfected construct (H. sapiens)Her2/Erbb2gBlock by IDTNM_004448Construct to generate stably expressing BJ cells
Transfected construct (H. sapiens)gp68gBlock by IDTUL119-118 of MN900952.1Cloning via added flanking Nhe1 and BamH1 restriction sites
Transfected construct (H. sapiens)gp34gBlock by IDTRL11 of MN900952.1Cloning via added flanking Nhe1 and BamH1 restriction sites
Transfected construct (H. sapiens)gEgBlock by IDTUS8 of MN136524.1Cloning via added flanking Nhe1 and BamH1 restriction sites
Transfected construct (H. sapiens)gIgBlock by IDTUS7 of MN136524.1Cloning via added flanking Nhe1 and BamH1 restriction sites
Transfected construct (H. sapiens)gp68-CD4gBlock by IDTUL119-118 of MN900952.1 fused to human CD4 TM and cytosolic tail BT019791.1Cloning via added flanking Nhe1 and BamH1 restriction sites
Transfected construct (H. sapiens)gp34-CD4gBlock by IDTRL11 of MN900952.1 fused to human CD4 TM and cytosolic tail BT019791.1Cloning via added flanking Nhe1 and BamH1 restriction sites
Transfected construct (H. sapiens)gE-CD4gBlock by IDTUS8 of MN136524.1 fused to human CD4 TM and cytosolic tail BT019791.1Cloning via added flanking Nhe1 and BamH1 restriction sites
AntibodyCytotect
Human plasma pool polyclonal
BiotestTitration as indicated in this study,
1:100 in flow cytometry
AntibodyαCD107a-APC mouse monoclonalBD FastImmuneClone H4A31:50 in flow cytometry
AntibodyαCD56-BV650
mouse monoclonal
BiolegendClone 5.1H111:50 in flow cytometry
AntibodyαCD3-FITC mouse monoclonalBiolegendClone UCHT11:50 in flow cytometry
Antibodyαhuman-IgG-PE mouse monoclonalBD1:100 in flow cytometry
AntibodyαHis-PE mouse monoclonalMiltenyi Biotec1:100 in flow cytometry
Peptide, recombinant proteinHuman Fcγ-TexasRedRocklandHuman IgG-Fc fragment
AntibodyRituximab
Humanized monoclonal
Roche,
University Hospital Freiburg Pharmacy
Titration as indicated in this study,
1:100 in flow cytometry
AntibodyHerceptin
Humanized monoclonal
Roche, University Hospital Freiburg PharmacyTitration as indicated in this study
AntibodyαCD20-PE
mouse monoclonal
Miltenyi Biotec1:100 in flow cytometry
Antibodyαhuman IgG-FITC Polyclonal rabbitThermoFisher1:100 in flow cytometry
AntibodyTHE Anti-His-HRP mouse monoclonalGenscript0.5 µg/ml in ELISA
AntibodyMSL-109
Humanized monoclonal
Absolute antibody10 µg/ml in flow cytometry
AntibodyB12
Humanized monoclonal
Kindly provided by Ann Hessell, Scripps USA1 µg/ml in precipitation
AntibodyB12 LALA
Humanized monoclonal
Kindly provided by Ann Hessell, Scripps USA1 µg/ml in precipitation
Recombinant DNA reagentpIRES-eGFPAddgene
Recombinant DNA reagentpSLFRTKndoi:10.1128/jvi.76.17.8596-8608
Sequence-based reagentKL-DeltaTRL11-Kana1This paperPCR primerACGACGAAGAGGACGAGGACGACAACGTCTGATAAGGAAGGCGAGAACGTGTTTTGCACCCCAGTGAATTCGAGCTCGGTAC
Sequence-based reagentKL-DeltaTRL11-Kana2This paperPCR primerTGTATACGCCGTATGCCTGTACGTGAGATGGTGAGGTCTTCGGCAGGCGACACGCATCTTGACCATGATTACGCCAAGCTCC
Sequence-based reagentKL-DeltaTRL12-Kana1This paperPCR primerCGGACGGACCTAGATACGGAACCTTTGTTGTTGACGGTGGACGGGGATTTACAGTAAAAGCCAGTGAATTCGAGCTCGGTAC
Sequence-based reagentKL-DeltaTRL12-Kana2This paperPCR primerCCTTACAGAATGTTTTAGTTTATTGTTCAGCTTCATAAGATGTCTGCCCGGAAACGTAGCGACCATGATTACGCCAAGCTCC
Sequence-based reagentKL-DeltaUL119-Kana1This paperPCR primerTTGTTTATTTTGTTGGCAGGTTGGCGGGGGAGGAAAAGGGGTTGAACAGAAAGGTAGGTGCCAGTGAATTCGAGCTCGGTAC
Sequence-based reagentKL-DeltaUL119-Kana2This paperPCR primerAGGTGACGCGACCTCCTGCCACATATAGCTCGTCCACACGCCGTCTCGTCACACGGCAACGACCATGATTACGCCAAGCTCC
Peptide, recombinant proteinsgp68-V5/HisThis paperEctodomain of UL119-118 from MN900952.1V5/His6-tagged. Produced in 293T cells
Peptide, recombinant proteinsgp34-V5/HisThis paperEctodomain of RL11 from MN900952.1V5/His6-tagged. Produced in 293T cells
Peptide, recombinant proteinsgp34mtrp-V5/HisThis paperEctodomain of RL11 mtrp mutant from MN900952.1V5/His6-tagged. Produced in 293T cells
Peptide, recombinant proteinsgp68-strepThis paperEctodomain of UL119-118 from MN900952.1Streptavidin-tagged. Produced in 293T cells
Peptide, recombinant proteinsgp34-strepThis paperEctodomain of RL11 from MN900952.1Streptavidin-tagged. Produced in 293T cells
Peptide, recombinant proteinsgp34mtrp-strepThis paperEctodomain of RL11 mtrp mutant from MN900952.1Streptavidin-tagged. Produced in 293T cells
Peptide, recombinant proteinCD16-Avi/HisSino BiologicalSoluble recombinant FcγRIIIAAvi/His-tagged
5 µg/ml in flow cytometry
Peptide, recombinant proteinCD32A-Avi/HisSino BiologicalSoluble recombinant FcγRIIAAvi/His-tagged
5 µg/ml in flow cytometry
Peptide, recombinant proteinCD32B-Avi/HisSino BiologicalSoluble recombinant FcγRIIBAvi/His-tagged
5 µg/ml in flow cytometry
Peptide, recombinant proteinCD64-Avi/HisSino BiologicalSoluble recombinant FcγRIAvi/His-tagged
5 µg/ml in flow cytometry
Peptide, recombinant proteinwtFcKindly provided by Pamela Bjorkman, Caltech USA doi:10.1128/JVI.01476-07
Peptide, recombinant proteinnbFcKindly provided by Pamela Bjorkman, Caltech USA doi:10.1128/JVI.01476-07
Commercial
assay or kit
Pierce F(ab')2 Preparation KitThermoFisher
Commercial assay or kitEasytag ExpressPerkin Elmer
Software, algorithmPrismGraphPad
Software, algorithmFlowJoBD

Additional files

Download links