Human Cytomegalovirus antagonizes activation of Fcγ receptors by distinct and synergizing modes of IgG manipulation

  1. Philipp Kolb
  2. Katja Hoffmann
  3. Annika Sievert
  4. Henrike Reinhard
  5. Eva Merce-Maldonado
  6. Vu Thuy Khanh Le-Trilling
  7. Anne Halenius
  8. Dominique Gütle
  9. Hartmut Hengel  Is a corresponding author
  1. Albert-Ludwigs-Universität Freiburg, Germany
  2. Heinrich-Heine-University Düsseldorf, Germany
  3. University Hospital Essen, University of Duisburg-Essen, Germany

Abstract

Human Cytomegalovirus (HCMV) is endowed with multiple highly sophisticated immune evasion strategies. This includes the evasion from antibody mediated immune control by counteracting host Fc-gamma receptor (FcγR) mediated immune control mechanisms such as antibody-dependent cell-mediated cytotoxicity (ADCC). We have previously shown that HCMV avoids FcγR activation by concomitant expression of the viral Fc-gamma binding glycoproteins (vFcγRs) gp34 and gp68. We now show that gp34 and gp68 bind IgG simultaneously at topologically different Fcγ sites and achieve efficient antagonization of host FcγR activation by distinct but synergizing mechanisms. While gp34 enhances immune complex internalization, gp68 acts as inhibitor of host FcγR binding to immune complexes. In doing so, gp68 induces Fcγ accessibility to gp34 and simultaneously limits host FcγR recognition. The synergy of gp34 and gp68 is compelled by the interfering influence of excessive non-immune IgG ligands and highlights conformational changes within the IgG globular chains critical for antibody effector function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all pertinent Figures (Figures 1D, 3D, 4C, 5D, 6B, 6C, 6D, Figure 4-figure supplement 1)

Article and author information

Author details

  1. Philipp Kolb

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Katja Hoffmann

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Annika Sievert

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Henrike Reinhard

    Heinrich-Heine-University Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Merce-Maldonado

    Heinrich-Heine-University Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Vu Thuy Khanh Le-Trilling

    Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne Halenius

    Institut of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dominique Gütle

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Hartmut Hengel

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    For correspondence
    hartmut.hengel@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3482-816X

Funding

Deutsche Forschungsgemeinschaft (HE2526/9-1; FOR2830)

  • Hartmut Hengel

Bundesministerium für Bildung und Forschung (031L0090)

  • Hartmut Hengel

Faculty of Medicine, Albert-Ludwigs-University; (EQUIP - Funding for Medical Scientists)

  • Philipp Kolb

Deutsche Forschungsgemeinschaft (HA6035/2-1; FOR2830)

  • Anne Halenius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melanie M Brinkmann, Technische Universität Braunschweig, Germany

Ethics

Human subjects: Consent of blood donors was approved by the ethical review committee, University of Freiburg, vote 474/18.

Version history

  1. Received: October 9, 2020
  2. Accepted: March 15, 2021
  3. Accepted Manuscript published: March 16, 2021 (version 1)
  4. Version of Record published: April 12, 2021 (version 2)

Copyright

© 2021, Kolb et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,684
    views
  • 212
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philipp Kolb
  2. Katja Hoffmann
  3. Annika Sievert
  4. Henrike Reinhard
  5. Eva Merce-Maldonado
  6. Vu Thuy Khanh Le-Trilling
  7. Anne Halenius
  8. Dominique Gütle
  9. Hartmut Hengel
(2021)
Human Cytomegalovirus antagonizes activation of Fcγ receptors by distinct and synergizing modes of IgG manipulation
eLife 10:e63877.
https://doi.org/10.7554/eLife.63877

Share this article

https://doi.org/10.7554/eLife.63877

Further reading

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.