Human Cytomegalovirus antagonizes activation of Fcγ receptors by distinct and synergizing modes of IgG manipulation
Abstract
Human Cytomegalovirus (HCMV) is endowed with multiple highly sophisticated immune evasion strategies. This includes the evasion from antibody mediated immune control by counteracting host Fc-gamma receptor (FcγR) mediated immune control mechanisms such as antibody-dependent cell-mediated cytotoxicity (ADCC). We have previously shown that HCMV avoids FcγR activation by concomitant expression of the viral Fc-gamma binding glycoproteins (vFcγRs) gp34 and gp68. We now show that gp34 and gp68 bind IgG simultaneously at topologically different Fcγ sites and achieve efficient antagonization of host FcγR activation by distinct but synergizing mechanisms. While gp34 enhances immune complex internalization, gp68 acts as inhibitor of host FcγR binding to immune complexes. In doing so, gp68 induces Fcγ accessibility to gp34 and simultaneously limits host FcγR recognition. The synergy of gp34 and gp68 is compelled by the interfering influence of excessive non-immune IgG ligands and highlights conformational changes within the IgG globular chains critical for antibody effector function.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all pertinent Figures (Figures 1D, 3D, 4C, 5D, 6B, 6C, 6D, Figure 4-figure supplement 1)
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (HE2526/9-1; FOR2830)
- Hartmut Hengel
Bundesministerium für Bildung und Forschung (031L0090)
- Hartmut Hengel
Faculty of Medicine, Albert-Ludwigs-University; (EQUIP - Funding for Medical Scientists)
- Philipp Kolb
Deutsche Forschungsgemeinschaft (HA6035/2-1; FOR2830)
- Anne Halenius
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Consent of blood donors was approved by the ethical review committee, University of Freiburg, vote 474/18.
Reviewing Editor
- Melanie M Brinkmann, Technische Universität Braunschweig, Germany
Publication history
- Received: October 9, 2020
- Accepted: March 15, 2021
- Accepted Manuscript published: March 16, 2021 (version 1)
- Version of Record published: April 12, 2021 (version 2)
Copyright
© 2021, Kolb et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 980
- Page views
-
- 122
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
A new study sheds light on how SARS-CoV-2 influences the way natural killer cells can recognize and kill infected cells.
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
Staphylococcus aureus infections pose a potential threat to livestock production and public health. A novel strategy is needed to control S. aureus infections due to its adaptive evolution to antibiotics. Autophagy plays a key role in degrading bacteria for innate immune cells. In order to promote S. aureus clearance via Toll-like receptor (TLR)-induced autophagy pathway, the domain fusion TLR2-4 with the extracellular domain of TLR2, specific recognizing S. aureus, and transmembrane and intracellular domains of TLR4 is assembled, then the goat expressing TLR2-4 is generated. TLR2-4 substantially augments the removal of S. aureus within macrophages by elevating autophagy level. Phosphorylated JNK and ERK1/2 promote LC3-puncta in TLR2-4 macrophages during S. aureus-induced autophagy via MyD88 mediated the TAK1 signaling cascade. Meantime, the TRIF-dependent TBK1-TFEB-OPTN signaling is involved in TLR2-4-triggered autophagy after S. aureus challenge. Moreover, the transcript of ATG5 and ATG12 is significantly increased via cAMP-PKA-NF-κB signaling, which facilitates S. aureus-induced autophagy in TLR2-4 macrophages. Overall, the novel receptor TLR2-4 enhances the autophagy-dependent clearance of S. aureus in macrophages via TAK1/TBK1-JNK/ERK, TBK1-TFEB-OPTN, and cAMP-PKA-NF-κB-ATGs signaling pathways, which provide an alternative approach for resistant against S. aureus infection.