1. Immunology and Inflammation
  2. Microbiology and Infectious Disease
Download icon

Human Cytomegalovirus antagonizes activation of Fcγ receptors by distinct and synergizing modes of IgG manipulation

  1. Philipp Kolb
  2. Katja Hoffmann
  3. Annika Sievert
  4. Henrike Reinhard
  5. Eva Merce-Maldonado
  6. Vu Thuy Khanh Le-Trilling
  7. Anne Halenius
  8. Dominique Gütle
  9. Hartmut Hengel  Is a corresponding author
  1. Albert-Ludwigs-Universität Freiburg, Germany
  2. Heinrich-Heine-University Düsseldorf, Germany
  3. University Hospital Essen, University of Duisburg-Essen, Germany
Research Article
  • Cited 2
  • Views 635
  • Annotations
Cite this article as: eLife 2021;10:e63877 doi: 10.7554/eLife.63877

Abstract

Human Cytomegalovirus (HCMV) is endowed with multiple highly sophisticated immune evasion strategies. This includes the evasion from antibody mediated immune control by counteracting host Fc-gamma receptor (FcγR) mediated immune control mechanisms such as antibody-dependent cell-mediated cytotoxicity (ADCC). We have previously shown that HCMV avoids FcγR activation by concomitant expression of the viral Fc-gamma binding glycoproteins (vFcγRs) gp34 and gp68. We now show that gp34 and gp68 bind IgG simultaneously at topologically different Fcγ sites and achieve efficient antagonization of host FcγR activation by distinct but synergizing mechanisms. While gp34 enhances immune complex internalization, gp68 acts as inhibitor of host FcγR binding to immune complexes. In doing so, gp68 induces Fcγ accessibility to gp34 and simultaneously limits host FcγR recognition. The synergy of gp34 and gp68 is compelled by the interfering influence of excessive non-immune IgG ligands and highlights conformational changes within the IgG globular chains critical for antibody effector function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all pertinent Figures (Figures 1D, 3D, 4C, 5D, 6B, 6C, 6D, Figure 4-figure supplement 1)

Article and author information

Author details

  1. Philipp Kolb

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Katja Hoffmann

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Annika Sievert

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Henrike Reinhard

    Heinrich-Heine-University Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Merce-Maldonado

    Heinrich-Heine-University Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Vu Thuy Khanh Le-Trilling

    Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne Halenius

    Institut of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Dominique Gütle

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Hartmut Hengel

    Institute of Virology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    For correspondence
    hartmut.hengel@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3482-816X

Funding

Deutsche Forschungsgemeinschaft (HE2526/9-1; FOR2830)

  • Hartmut Hengel

Bundesministerium für Bildung und Forschung (031L0090)

  • Hartmut Hengel

Faculty of Medicine, Albert-Ludwigs-University; (EQUIP - Funding for Medical Scientists)

  • Philipp Kolb

Deutsche Forschungsgemeinschaft (HA6035/2-1; FOR2830)

  • Anne Halenius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Consent of blood donors was approved by the ethical review committee, University of Freiburg, vote 474/18.

Reviewing Editor

  1. Melanie M Brinkmann, Technische Universität Braunschweig, Germany

Publication history

  1. Received: October 9, 2020
  2. Accepted: March 15, 2021
  3. Accepted Manuscript published: March 16, 2021 (version 1)
  4. Version of Record published: April 12, 2021 (version 2)

Copyright

© 2021, Kolb et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 635
    Page views
  • 87
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Srijan Seal et al.
    Review Article

    Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hao Gu et al.
    Research Article

    Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.