Dentate gyrus development requires a cortical hem-derived astrocytic scaffold

  1. Alessia Caramello
  2. Christophe Galichet
  3. Karine Rizzoti  Is a corresponding author
  4. Robin Lovell-Badge  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom

Abstract

During embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration towards the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have moreover been provided where required.

Article and author information

Author details

  1. Alessia Caramello

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7455-7686
  2. Christophe Galichet

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0244-9381
  3. Karine Rizzoti

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Karine.Rizzoti@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0711-5452
  4. Robin Lovell-Badge

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    For correspondence
    robin.lovell-badge@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Medical Research Council (U117512772)

  • Robin Lovell-Badge

Medical Research Council (U117562207)

  • Robin Lovell-Badge

Medical Research Council (U117570590)

  • Robin Lovell-Badge

Cancer Research UK (FC001107)

  • Robin Lovell-Badge

Medical Research Council (FC001107)

  • Robin Lovell-Badge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: All experiments carried out on mice were approved under the UK Animal (scientificprocedures) Act 1986 (Project license n. 80/2405 and PP8826065).

Version history

  1. Received: October 10, 2020
  2. Accepted: January 1, 2021
  3. Accepted Manuscript published: January 4, 2021 (version 1)
  4. Version of Record published: January 13, 2021 (version 2)

Copyright

© 2021, Caramello et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,704
    views
  • 302
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessia Caramello
  2. Christophe Galichet
  3. Karine Rizzoti
  4. Robin Lovell-Badge
(2021)
Dentate gyrus development requires a cortical hem-derived astrocytic scaffold
eLife 10:e63904.
https://doi.org/10.7554/eLife.63904

Share this article

https://doi.org/10.7554/eLife.63904

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.