Abstract

Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne febrile illness with wide geographic distribution. CCHF is caused by infection with the Crimean-Congo hemorrhagic fever virus (CCHFV) and case fatality rates can be as high as 30%. Despite causing severe disease in humans, our understanding of the host and viral determinants of CCHFV pathogenesis are limited. A major limitation in the investigation of CCHF has been the lack of suitable small animal models. Wild-type mice are resistant to clinical isolates of CCHFV and consequently, mice must be deficient in type I interferon responses to study the more severe aspects of CCHFV. We report here a mouse-adapted variant of CCHFV that recapitulates in adult, immunocompetent mice the severe CCHF observed in humans. This mouse-adapted variant of CCHFV significantly improves our ability to study host and viral determinants of CCHFV-induced disease in a highly tractable mouse model.

Data availability

Relevant source data for figures is provided and the consensus sequence of MA-CCHFV has been deposited to Genbank (Accession #s MW058028 - MW058030)

Article and author information

Author details

  1. David W Hawman

    Laboratory of Virology, NIAID/NIH, Hamilton, United States
    For correspondence
    david.hawman@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8233-8176
  2. Kimberly Meade-White

    Laboratory of Virology, NIAID/NIH, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shanna Leventhal

    Laboratory of Virology, NIAID/NIH, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Friederike Feldmann

    Laboratory of Virology, NIAID/NIH, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Atsushi Okumura

    Laboratory of Virology, NIAID/NIH, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian Smith

    Texas Veterinary Pathology, Texas Veterinary Pathology, Spring Branch, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dana Scott

    Rocky Mountain Veterinary Branch, NIAID/NIH, Hamilton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Heinz Feldmann

    Rocky Mountain Veterinary Branch, NIAID/NIH, Hamilton, United States
    For correspondence
    feldmannh@niaid.nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Funding

Department of Intramural Research, NIH

  • David W Hawman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the institutional animal care and use committee, protocol #s 2017-68 and 2019-63. Studies performed by experienced personnel under veterinary oversight. Mice were group-housed in HEPA-filtered cage systems and acclimatized to BSL4 conditions prior to start of the experiment. They were provided with nesting material and food and water ad libitum.

Reviewing Editor

  1. Amy Hartman, University of Pittsburgh

Version history

  1. Received: October 10, 2020
  2. Accepted: January 7, 2021
  3. Accepted Manuscript published: January 8, 2021 (version 1)
  4. Version of Record published: January 15, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,532
    Page views
  • 206
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Hawman
  2. Kimberly Meade-White
  3. Shanna Leventhal
  4. Friederike Feldmann
  5. Atsushi Okumura
  6. Brian Smith
  7. Dana Scott
  8. Heinz Feldmann
(2021)
Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus
eLife 10:e63906.
https://doi.org/10.7554/eLife.63906

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Roshni Roy, Pei-Lun Kuo ... Luigi Ferrucci
    Research Article Updated

    Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.

    1. Immunology and Inflammation
    2. Neuroscience
    René Lemcke, Christine Egebjerg ... Birgitte R Kornum
    Research Article

    Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.