HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics

  1. Amy R Strom
  2. Ronald J Biggs
  3. Edward J Banigan
  4. Xiaotao Wang
  5. Katherine Chiu
  6. Cameron Herman
  7. Jimena Collado
  8. Feng Yue
  9. Joan C Ritland Politz
  10. Leah J Tait
  11. David Scalzo
  12. Agnes Telling
  13. Mark Groudine
  14. Clifford P Brangwynne
  15. John F Marko
  16. Andrew D Stephens  Is a corresponding author
  1. Princeton University, United States
  2. Northwestern University, United States
  3. Massachusetts Institute of Technology, United States
  4. Feinberg School of Medicine, Northwestern University, United States
  5. University of Massachusetts Amherst, United States
  6. The Fred Hutchinson Cancer Research Center, United States

Abstract

Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.

Data availability

We have provided the RNAseq data sets in the supplemental material as excel files

Article and author information

Author details

  1. Amy R Strom

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ronald J Biggs

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward J Banigan

    Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5478-7425
  4. Xiaotao Wang

    Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3531-2157
  5. Katherine Chiu

    Biology Department, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cameron Herman

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jimena Collado

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Feng Yue

    Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joan C Ritland Politz

    Basic Sciences Division, The Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Leah J Tait

    Basic Sciences Division, The Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David Scalzo

    Basic Sciences Division, The Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Agnes Telling

    Basic Sciences Division, The Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Mark Groudine

    Basic Sciences Division, The Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Clifford P Brangwynne

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1350-9960
  15. John F Marko

    Department of Molecular Biosciences, Department of Physics and Astronomy, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Andrew D Stephens

    Biology Department, University of Massachusetts Amherst, Amherst, United States
    For correspondence
    Andrew.stephens@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5474-7845

Funding

National Institutes of Health (U54DK107980)

  • John F Marko

National Institutes of Health (U01DA040583)

  • Mark Groudine

National Institutes of Health (1UM1HG011536)

  • John F Marko
  • Andrew D Stephens

National Institutes of Health (R00GM123195)

  • Andrew D Stephens

National Institutes of Health (U54CA193419)

  • John F Marko

National Institutes of Health (U01 DA040601)

  • Clifford P Brangwynne

Mark Foundation For Cancer Research (Life science research foundation Postdoctoral Fellowship,AWD1006303)

  • Amy R Strom

National Institutes of Health (GM114190)

  • Edward J Banigan

National Institutes of Health (R24DK106766)

  • Feng Yue

National Institutes of Health (1R35GM124820)

  • Feng Yue

National Institutes of Health (R01HG009906)

  • Feng Yue

National Institutes of Health (U01CA200060)

  • Feng Yue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, University of California, San Francisco, United States

Version history

  1. Received: October 12, 2020
  2. Accepted: June 8, 2021
  3. Accepted Manuscript published: June 9, 2021 (version 1)
  4. Version of Record published: June 25, 2021 (version 2)

Copyright

© 2021, Strom et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,118
    views
  • 937
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy R Strom
  2. Ronald J Biggs
  3. Edward J Banigan
  4. Xiaotao Wang
  5. Katherine Chiu
  6. Cameron Herman
  7. Jimena Collado
  8. Feng Yue
  9. Joan C Ritland Politz
  10. Leah J Tait
  11. David Scalzo
  12. Agnes Telling
  13. Mark Groudine
  14. Clifford P Brangwynne
  15. John F Marko
  16. Andrew D Stephens
(2021)
HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics
eLife 10:e63972.
https://doi.org/10.7554/eLife.63972

Share this article

https://doi.org/10.7554/eLife.63972

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article Updated

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson’s disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.