Abstract

Eukaryotic genomes are organized dynamically through the repositioning of nucleosomes. Isw2 is an enzyme that has been previously defined as a genome-wide, non-specific nucleosome spacing factor. Here, we show that Isw2 instead acts as an obligately targeted nucleosome remodeler in vivo through physical interactions with sequence-specific factors. We demonstrate that Isw2- recruiting factors use small and previously uncharacterized epitopes, which direct Isw2 activity through highly conserved acidic residues in the Isw2 accessory protein Itc1. This interaction orients Isw2 on target nucleosomes, allowing for precise nucleosome positioning at targeted loci. Finally, we show that these critical acidic residues have been lost in the Drosophila lineage, potentially explaining the inconsistently characterized function of Isw2-like proteins. Altogether, these data suggest an 'interacting barrier model' where Isw2 interacts with a sequence-specific factor to accurately and reproducibly position a single, targeted nucleosome to define the precise border of phased chromatin arrays.

Data availability

Sequencing data have been deposited in GEO under accession code GSE149804

The following data sets were generated

Article and author information

Author details

  1. Drake A Donovan

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Johnathan G Crandall

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9144-3135
  3. Vi N Truong

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abigail L Vaaler

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas B Bailey

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Devin Dinwiddie

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Orion GB Banks

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Laura E McKnight

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    For correspondence
    lthom009@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4322-3066
  9. Jeffrey N McKnight

    Institute of Molecular Biology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (T32 GM007759)

  • Drake A Donovan
  • Orion GB Banks

National Institutes of Health (T32 GM007413)

  • Drake A Donovan
  • Vi N Truong

National Institute of General Medical Sciences (R01 GM129242)

  • Jeffrey N McKnight

Donald and Delia Baxter Foundation

  • Jeffrey N McKnight

Medical Research Foundation of Oregon

  • Jeffrey N McKnight

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Donovan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,689
    views
  • 418
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Drake A Donovan
  2. Johnathan G Crandall
  3. Vi N Truong
  4. Abigail L Vaaler
  5. Thomas B Bailey
  6. Devin Dinwiddie
  7. Orion GB Banks
  8. Laura E McKnight
  9. Jeffrey N McKnight
(2021)
Basis of specificity for a conserved and promiscuous chromatin remodeling protein
eLife 10:e64061.
https://doi.org/10.7554/eLife.64061

Share this article

https://doi.org/10.7554/eLife.64061

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.