Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate

Abstract

Cardiac magnetic resonance imaging (MRI) has revealed fibrosis in embolic stroke of undetermined source (ESUS) patients comparable to levels seen in atrial fibrillation (AFib). We used computational modeling to understand the absence of arrhythmia in ESUS despite the presence of putatively pro-arrhythmic fibrosis. MRI-based atrial models were reconstructed for 45 ESUS and 45 AFib patients. The fibrotic substrate's arrhythmogenic capacity in each patient was assessed computationally. Reentrant drivers were induced in 24/45 (53%) ESUS and 22/45 (49%) AFib models. Inducible models had more fibrosis (16.7±5.45%) than non-inducible models (11.07±3.61%; P<0.0001); however, inducible subsets of ESUS and AFib models had similar fibrosis levels (P=0.90), meaning the intrinsic pro-arrhythmic substrate properties of fibrosis in ESUS and AFib are indistinguishable. This suggests some ESUS patients have latent pre-clinical fibrotic substrate that could be a future source of arrhythmogenicity. Thus, our work prompts the hypothesis that ESUS patients with fibrotic atria are spared from AFib due to an absence of arrhythmia triggers.

Data availability

Where possible (Figs. 2, 3, 5, 6), raw numerical data underlying figures are available via figshare: https://doi.org/10.6084/m9.figshare.14348042. Patient-derived data related to this article, including processed versions thereof, are not publicly available out of respect for the privacy of the patients involved. Interested parties wishing to obtain these data for non-commercial reuse should contact the co-corresponding authors via email. Upon all reasonable requests for access to these data, the co-corresponding authors will work to pursue negotiation of a Data Transfer and Use Agreement with the requesting party; administrators at the requesting party's institution, the University of Washington, and Klinikum Coburg; and relevant Institutional Review Boards at all the latter institutions. Source files for a complete example of computational modeling and simulation of the fibrotic atria, using publicly available data sets and software tools only, can be found via the following permanent link: https://doi.org/10.6084/m9.figshare.14347979. Documentation provided with this example includes instructions on the use of the openCARP cardiac electrophysiology simulator and the meshalyzer visualization software (both available via https://opencarp.org/) to precisely reproduce the computational protocol applied to patient-specific left atria models in this study.

Article and author information

Author details

  1. Savannah F Bifulco

    Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Griffin D Scott

    Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sakher Sarairah

    Cardiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zeinab Birjandian

    Cardiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Caroline H Roney

    School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven A Niederer

    School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Mahnkopf

    Cardiology, Klinikum Coburg, Coburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Kuhnlein

    Cardiology, Klinikum Coburg, Coburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Marcel Mitlacher

    Cardiology, Klinikum Coburg, Coburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. David Tirschwell

    Neurology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. W T Longstreth Jr

    Neurology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nazem Akoum

    Cardiology, University of Washington, Seattle, United States
    For correspondence
    nakoum@cardiology.washington.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2001-6806
  13. Patrick M Boyle

    Bioengineering, University of Washington, Seattle, United States
    For correspondence
    pmjboyle@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9048-1239

Funding

Achievement Rewards for College Scientists Foundation

  • Savannah F Bifulco

National Institutes of Health (T32-EB001650)

  • Savannah F Bifulco

Medical Research Council (MR/S015086/1)

  • Caroline H Roney

National Institutes of Health (R01-HL152256)

  • Steven A Niederer

H2020 European Research Council (PREDICT-HF (864055))

  • Steven A Niederer

British Heart Foundation (RG/20/4/34803)

  • Steven A Niederer

Engineering and Physical Sciences Research Council (EP/P01268X/1)

  • Steven A Niederer

Wellcome Trust (203148/Z/16/Z)

  • Steven A Niederer

National Institutes of Health (NIH 5-U01-NS095869)

  • David Tirschwell
  • W T Longstreth Jr

John Locke Charitable Trust

  • Nazem Akoum

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noriaki Emoto, Kobe Pharmaceutical University, Japan

Ethics

Human subjects: This study was approved by the Institutional Review Board (IRB) of the University of Washington (UW) and the Ethikkommission der Bayerischen Ländesärztekammer München, Bayern, Deutschland; all participants provided written informed consent. Associated reference numbers: IRB5350 for ESUS patients; IRB8763 for AFib patients.

Version history

  1. Received: October 21, 2020
  2. Accepted: April 16, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Version of Record published: May 24, 2021 (version 2)

Copyright

© 2021, Bifulco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,245
    views
  • 141
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Savannah F Bifulco
  2. Griffin D Scott
  3. Sakher Sarairah
  4. Zeinab Birjandian
  5. Caroline H Roney
  6. Steven A Niederer
  7. Christian Mahnkopf
  8. Peter Kuhnlein
  9. Marcel Mitlacher
  10. David Tirschwell
  11. W T Longstreth Jr
  12. Nazem Akoum
  13. Patrick M Boyle
(2021)
Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate
eLife 10:e64213.
https://doi.org/10.7554/eLife.64213

Share this article

https://doi.org/10.7554/eLife.64213

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Andrea I Luppi, Pedro AM Mediano ... Emmanuel A Stamatakis
    Research Article

    How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain’s default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.