Antibiotics: Modelling how antimicrobial resistance spreads between wards

Moving patients between wards and prescribing high levels of antibiotics increases the spread of bacterial infections that are resistant to treatment in hospitals.
  1. Tjibbe Donker  Is a corresponding author
  1. Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Germany

Across the world, there are increasing numbers of microbes that are able to survive antibiotic treatment. This antimicrobial resistance (or AMR for short) is reducing the number of drugs available to fight off bacterial infections, sometimes to the extent that even the last line of treatment is no longer effective (Friedman et al., 2016). Many of the deaths associated with AMR occur in hospitals, which are ideal breeding grounds for resistant bacteria due to the high amounts of antibiotics consumed and the frail patient population (de Kraker et al., 2011; Naylor et al., 2019).

AMR is traditionally studied within individual hospital wards, where bacteria are transmitted between patients through contact with healthcare workers. However, wards are not individual entities because patients are routinely transferred between them. Every time a patient is transferred to a new ward, there is the potential that they may bring new antibiotic-resistant bacteria with them. As a result, all hospital wards – and consequently all the hospitals in a country – are connected in a large network that AMR bacteria can easily spread through (Nekkab et al., 2017).

Another driving force behind the spread of AMR is bacterial selection, which happens when microbes that are resistant to antibiotics outcompete and replace those that are more susceptible. In hospitals, it is likely that most bacterial populations already contain some resistant bacteria that have an advantage due to the high volume of antibiotics consumed. However, it is largely unknown how the combination of bacterial selection and the transfer of patients between wards shape the spread of AMR within a hospital network.

Now, in eLife, Jean-Philippe Rasigade and co-workers from Université de Lyon and the Hospices Civils de Lyon – including Julie Teresa Shapiro as first author – report how seven species of bacteria, and their resistant strains, spread across 357 wards of a major hospital organisation in Lyon (Shapiro et al., 2020). To do this, the team adapted a model that is often used in ecology to study populations of animal species that live in, and migrate between, different locations. In the model, the migration of bacterial species was calculated by multiplying the number of bacteria in the original ward by the number of patients moved. Using this model, Shapiro et al. were able to examine how the abundance of bacterial species varied depending on the type of ward, how connected it is, and how many antibiotics patients in the ward consumed (Figure 1).

Schematic diagram showing how resistant bacteria spread between hospital wards.

Each hospital ward has certain properties, such as its size, the type of ward (e.g. general, intensive and progressive care), and the number of antibiotics it consumes. When patients are moved between wards, resistant bacteria can also be transferred with them. If the level of antibiotic used in the new ward is high, the resistant bacteria may have a selection advantage, causing a rise in antimicrobial resistance.

Shapiro et al. found that both the antibiotics used and the connectivity between wards influenced the number of patients infected with one of the seven studied strains of bacteria. However, these properties affected AMR differently depending on the bacterial species. For instance, two strains of resistant bacteria that are commonly found in hospitals, Pseudomonas aeruginosa and Enterococcus faecium, were found in higher numbers when more patients were being moved between wards: this increase is likely due to these patients spreading bacteria from different parts of the hospital. However, the spread of other species, such as Klebsiella pneumoniae, was more strongly affected by the level of antibiotics used.

This study highlights why the strategies used to control AMR should be specific for the bacterial strain that caused the resistant infection. Many hospitals have implemented antibiotic stewardship programmes, which reduce the selection of resistant bacteria by limiting the number of antibiotics prescribed and administered to patients. Although these programmes control some resistant strains, this strategy may not work for all bacteria. This is because increases in AMR are caused by the amplification of existing resistant strains rather than mutations that allow non-resistant bacteria to become resistant. The best way to reduce the spread of resistant bacteria is therefore to prevent patients from other wards introducing new strains to uninfected areas. This suggests that effectively controlling AMR is going to require studying the multiple wards and hospitals that make up a country’s connected healthcare system.

References

Article and author information

Author details

  1. Tjibbe Donker

    Tjibbe Donker is in the Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Freiburg, Germany

    For correspondence
    tjibbe.donker@uniklinik-freiburg.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9022-4240

Publication history

  1. Version of Record published:

Copyright

© 2020, Donker

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,272
    views
  • 183
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tjibbe Donker
(2020)
Antibiotics: Modelling how antimicrobial resistance spreads between wards
eLife 9:e64228.
https://doi.org/10.7554/eLife.64228

Further reading

    1. Ecology
    Wei Cong, Jia Li ... Yuguang Zhang
    Research Article

    Carnivores play key roles in maintaining ecosystem structure and function as well as ecological processes. Understanding how sympatric species coexist in natural ecosystems is a central research topic in community ecology and biodiversity conservation. In this study, we explored intra- and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores (wolf Canis lupus, snow leopard Panthera uncia, Eurasian lynx Lynx lynx) and mesocarnivores (Pallas’s cat Otocolobus manul, red fox Vulpes vulpes, Tibetan fox Vulpes ferrilata) in Qilian Mountain National Park, China, using camera trapping data and DNA metabarcoding sequencing data. Our study showed that apex carnivore species had more overlap temporally (coefficients of interspecific overlap ranging from 0.661 to 0.900) or trophically (Pianka’s index ranging from 0.458 to 0.892), mesocarnivore species had high dietary overlap with each other (Pianka’s index ranging from 0.945 to 0.997), and apex carnivore and mesocarnivore species had high temporal overlap (coefficients of interspecific overlap ranging from 0.497 to 0.855). Large dietary overlap was observed between wolf and snow leopard (Pianka’s index = 0.892) and Pallas’s cat and Tibetan fox (Pianka’s index = 0.997), suggesting the potential for increased resource competition for these species pairs. We concluded that spatial niche partitioning is likely to key driver in facilitating the coexistence of apex carnivore species, while spatial and temporal niche partitioning likely facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. Our findings consider partitioning across temporal, spatial, and dietary dimensions while examining diverse coexistence patterns of carnivore species in Qilian Mountain National Park, China. These findings will contribute substantially to current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.

    1. Ecology
    Elham Nourani, Louise Faure ... Kamran Safi
    Research Article

    The heterogeneity of the physical environment determines the cost of transport for animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting their distribution and movement to maximize gains and reduce costs. Much of our knowledge about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-temporal variations of the environment. However, an animal’s internal state can significantly impact its ability to perceive and utilize available energy, creating a distinction between the ‘fundamental’ and the ‘realized’ energy landscapes. Here, we show that the realized energy landscape varies along the ontogenetic axis. Locomotor and cognitive capabilities of individuals change over time, especially during the early life stages. We investigate the development of the realized energy landscape in the Central European Alpine population of the golden eagle Aquila chrysaetos, a large predator that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, demonstrating that energetic costs of traversing the landscape decreased with age. Consequently, the potentially flyable area within the Alpine region increased 2170-fold during their first three years of independence. Our work contributes to a predictive understanding of animal movement by presenting ontogeny as a mechanism shaping the realized energy landscape.