Residue-by-residue analysis of cotranslational membrane protein integration in vivo

  1. Felix Nicolaus
  2. Ane Metola
  3. Daphne Mermans
  4. Amanda Liljenström
  5. Ajda Krč
  6. Salmo Mohammed Abdullahi
  7. Matthew Zimmer
  8. Thomas F Miller III
  9. Gunnar von Heijne  Is a corresponding author
  1. Stockholm University, Sweden
  2. University of Ljubljana, Slovenia
  3. California Institute of Technology, United States

Abstract

We follow the cotranslational biosynthesis of three multi-spanning E. coli inner membrane proteins in vivo using high-resolution Force Profile Analysis. The force profiles show that the nascent chain is subjected to rapidly varying pulling forces during translation, and reveal unexpected complexities in the membrane integration process. We find that an N-terminal cytoplasmic domain can fold in the ribosome exit tunnel before membrane integration starts, that charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a transmembrane helix (TMH) can advance or delay membrane integration, and that point mutations in an upstream TMH can affect the pulling forces generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the integration process. Our results support the 'sliding' model of translocon-mediated membrane protein integration, in which hydrophobic segments are continually exposed to the lipid bilayer during their passage through the SecYEG translocon.

Data availability

All fFL values measured in this study are included as Figures Source Data.

Article and author information

Author details

  1. Felix Nicolaus

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Ane Metola

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2885-7634
  3. Daphne Mermans

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Amanda Liljenström

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Ajda Krč

    Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
    Competing interests
    The authors declare that no competing interests exist.
  6. Salmo Mohammed Abdullahi

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew Zimmer

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas F Miller III

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1882-5380
  9. Gunnar von Heijne

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    For correspondence
    Gunnar.von.Heijne@dbb.su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4490-8569

Funding

Knut och Alice Wallenbergs Stiftelse (2017.0323)

  • Gunnar von Heijne

Novo Nordisk Fonden (NNF18OC0032828)

  • Gunnar von Heijne

Vetenskapsrådet (NNF18OC0032828)

  • Gunnar von Heijne

National Institutes of Health (R01GM125063)

  • Thomas F Miller III

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, University of California Berkeley, United States

Version history

  1. Received: October 23, 2020
  2. Accepted: February 5, 2021
  3. Accepted Manuscript published: February 8, 2021 (version 1)
  4. Version of Record published: February 16, 2021 (version 2)

Copyright

© 2021, Nicolaus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,070
    Page views
  • 372
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Felix Nicolaus
  2. Ane Metola
  3. Daphne Mermans
  4. Amanda Liljenström
  5. Ajda Krč
  6. Salmo Mohammed Abdullahi
  7. Matthew Zimmer
  8. Thomas F Miller III
  9. Gunnar von Heijne
(2021)
Residue-by-residue analysis of cotranslational membrane protein integration in vivo
eLife 10:e64302.
https://doi.org/10.7554/eLife.64302

Share this article

https://doi.org/10.7554/eLife.64302

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.