Abstract

Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human iPSC-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC related pathologies.

Data availability

Sequencing data was deposited in GEO: GSE160871

The following data sets were generated

Article and author information

Author details

  1. Rafael Jesus Fernandez III

    Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9295-4810
  2. Zachary J G Gardner

    Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Katherine J Slovik

    Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Derek C Liberti

    Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2991-9283
  5. Katrina N Estep

    Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Wenli Yang

    Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Qijun Chen

    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Garrett T Santini

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  9. Javier V Perez

    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Sarah Root

    College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  11. Ranvir Bhatia

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  12. John W Tobias

    Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  13. Apoorva Babu

    Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  14. Michael P Morley

    Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  15. David B Frank

    Penn-CHOP Lung Biology Institute, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  16. Edward E Morrisey

    Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Edward E Morrisey, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5785-1939
  17. Christopher J Lengner

    Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
    For correspondence
    lengner@vet.upenn.edu
    Competing interests
    No competing interests declared.
  18. F Brad Johnson

    Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    johnsonb@pennmedicine.upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7443-7227

Funding

National Institute on Aging (R21AG054209)

  • Christopher J Lengner
  • F Brad Johnson

National Institute on Aging (5T32AG000255)

  • Rafael Jesus Fernandez III

Team Telomere/Penn Orphan Disease Center

  • Christopher J Lengner
  • F Brad Johnson

National Heart, Lung, and Blood Institute (R01HL148821)

  • Christopher J Lengner
  • F Brad Johnson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Fernandez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,602
    views
  • 329
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rafael Jesus Fernandez III
  2. Zachary J G Gardner
  3. Katherine J Slovik
  4. Derek C Liberti
  5. Katrina N Estep
  6. Wenli Yang
  7. Qijun Chen
  8. Garrett T Santini
  9. Javier V Perez
  10. Sarah Root
  11. Ranvir Bhatia
  12. John W Tobias
  13. Apoorva Babu
  14. Michael P Morley
  15. David B Frank
  16. Edward E Morrisey
  17. Christopher J Lengner
  18. F Brad Johnson
(2022)
GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells
eLife 11:e64430.
https://doi.org/10.7554/eLife.64430

Share this article

https://doi.org/10.7554/eLife.64430

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.